
Department of Mathematics

University of Fribourg (Switzerland)

BROAD AND NARROW REGIONS

OF HYPERBOLIC STRUCTURES ON SURFACES

THESIS

presented to the Faculty of Science of the University of Fribourg

(Switzerland) in consideration for the award of the academic grade of

Doctor scientiarum mathematicarum

by

Federica Fanoni

from

Sondrio, Italy

Thesis No: 1906

UniPrint

2015



Accepted by the Faculty of Science of the University of Fribourg (Switzer-

land) upon the recommendation of:

Prof. Hugo Parlier (Thesis supervisor)

University of Fribourg, Switzerland

Prof. Ara Basmajian (Examiner)

CUNY Graduate Center and Hunter College, United States of America

Prof. Gregory McShane (Examiner)

Institut Fourier, France

Prof. Stefan Wenger (President of the Jury)

University of Fribourg, Switzerland

Fribourg, June 18th, 2015

Thesis supervisor Dean

Hugo Parlier Fritz Müller



Acknowledgements

First of all, I would like to express all my gratitude to my advisor Hugo

Parlier. Thank you for introducing me to such a beautiful subject and for

teaching me so much. Thank you for your enthusiasm, for your mathematical

assistance, but also – and so importantly – for your human support. I knew I

could count on you, especially when being a PhD student was tough. Thank

you very much.

I am grateful to Ara Basmajian and Greg McShane for agreeing to be part

of my jury, for the effort they put in reading my thesis and for taking the

time to travel and be present at my defence. My thanks also go to Stefan

Wenger for accepting to be the president of my jury.

I would like to thank all the colleagues in Fribourg who made the department

of Mathematics a nice and friendly environment in which to work. I am also

grateful to the CUNY Graduate Center, and in particular to Ara Basmajian,

for hosting me during the last months of my PhD.

These years would have been much less fun and for sure not as enjoyable

without all the wonderful people I had the chance of meeting. I feel lucky

knowing that I have so many friends around the world. So thanks (merci,

shukran, danke, grazie, tack) to (in no particular order) Ammar and Jor-

dane (Dude and Dudette [Mike]), Camille (Camilley) and Flora, Daniele,

Matthieu (the Gendulpho), Scott, Nicolas (Nicky), Ivan and Ornella, Elia,

Martin, Kevin and Sara, Ann, Viveka, Chris, Blanca and Max.

La lista dei motivi per ringraziare i miei genitori, Dario e Marilisa, e mio
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Abstract

This dissertation is dedicated to the study of some concrete properties of

hyperbolic structures on surfaces. More precisely, it is focused on three main

problems.

The first one is the study of the maximum injectivity radius, the radius

of a largest possible embedded metric disk. We prove that there exists a

universal (explicit) constant ρT such that each hyperbolic two-dimensional

orbifold has maximum injectivity radius at least ρT and we determine the

unique orbifold with maximum injectivity radius equal to ρT . We use this

result to deduce that each surface has a point which is displaced at distance

at least 2ρT by any non-trivial automorphism and to give an alternative

characterization of surfaces with a maximal amount of symmetries.

The other two problems are about systoles (shortest simple closed geodesics)

of hyperbolic surfaces. We are interested in bounding the length and the

number of systoles. The first result is an upper bound on the systole length

for finite area surfaces which does not depend on the number of cusps. The

second result is an upper bound on the kissing number (the number of

systoles) which grows linearly in the number of cusps and subquadratically

in the genus. To obtain this bound, we study intersection properties of

systoles. In particular, we prove that two systoles can intersect at most twice

and that if they do intersect twice there is a constraint on their topological

configuration.

The tools used in this thesis are those of hyperbolic trigonometry and topo-

logical and geometric properties of simple closed curves and geodesics.
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Sommario

Questa dissertazione tratta di alcune proprietà concrete di strutture iper-

boliche su superfici. Più precisamente, è concentrata su tre problemi fonda-

mentali.

Il primo è lo studio del raggio di iniettività massimo, il raggio del più grande

disco metrico immerso. Mostriamo che esiste una costante universale (es-

plicita) ρT tale che ogni orbifold iperbolico bidimensionale ha raggio di ini-

ettività massimo maggiore o uguale a ρT e determiniamo l’unico orbifold

con raggio di iniettività massimo uguale a ρT . Utilizziamo questo risultato

per dedurre che ogni superficie possiede un punto che è trasportato a dis-

tanza almeno 2ρT da ogni automorfismo diverso dall’identità e per dare una

caratterizzazione alternativa delle superfici con il massimo numero possibile

di simmetrie.

Gli altri due problemi trattano delle sistole (le più corte geodetiche chiuse e

semplici) di superfici iperboliche. Siamo interessati a maggiorare la lunghezza

e il numero delle sistole. Il primo risultato è un limite superiore per la

lunghezza della sistole per superfici di area finita che non dipende dal nu-

mero di cuspidi. Il secondo risultato è un limite superiore per il numero

di sistole (kissing number) che cresce linearmente all’aumentare del numero

di cuspidi ed è subquadratico al variare del genere. Per ottenere questa

maggiorazione, studiamo le proprietà di intersezione delle sistole. In parti-

colare, dimostriamo che due sistole possono avere al massimo due punti di

intersezione e che se si intersecano in due punti c’è una restrizione sulla loro

configurazione topologica.

Gli strumenti utilizzati in questa tesi sono la trigonometria iperbolica e le

proprietà topologiche e geometriche di curve e geodetiche chiuse e semplici.
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CHAPTER 1

Introduction

Hyperbolic, Euclidean and spherical geometry are the three model geome-

tries which correspond to Riemannian metrics of constant curvature, either

positive (spherical geometry), zero (Euclidean geometry) or negative (hy-

perbolic geometry). One of the main aspects that distinguishes them is

the behavior of lines (geodesics): in the Euclidean plane, two lines with a

common orthogonal will stay at the same distance from each other, while

in the hyperbolic plane they will diverge and on the (round) sphere they

will converge. In more ancient terms, Euclidean geometry satisfies the fifth

postulate of Euclid, which can be rephrased as

Given a line γ and a point P outside of it,

there exists a unique line through P and parallel to γ.

This does not hold for spherical or hyperbolic geometry: there is no such

parallel line in spherical geometry and there exist more than one (actually,

infinitely many) in hyperbolic geometry.

In the study of surfaces, hyperbolic geometry plays a special role. Indeed,

if we want to endow a surface of negative Euler characteristic with a Rie-

mannian metric of constant curvature, it follows from Gauss–Bonnet The-

orem that the curvature should be negative. As most surfaces (all but a

handful) have negative Euler characteristic, hyperbolic geometry turns out

to be very prominent in dimension two. Even more so because, given a

topological surface of negative Euler characteristic, there are (uncountably)

many hyperbolic metrics that can be put on it, even if we restrict to smooth,

finite area ones1. Many years of research have been spent to reach a better

understanding of these structures and their two natural parameter spaces,

Teichmüller and moduli spaces, in particular through the study of simple

closed curves on surfaces. One of the classical results in this line of thought

is Fenchel and Nielsen’s construction of global coordinates for Teichmüller

space, based on simple closed curves (see [FN03]). More recently, Thurston

used simple closed curves and related objects to describe deformations of

hyperbolic surfaces and to define a boundary of Teichmüller space (see for

1Unless we were so unlucky to start with the unique counterexample to this statement:

the thrice punctured sphere.
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2 1. INTRODUCTION

instance [Thu88], [Thu98]). Among the authors who studied simple closed

geodesics on hyperbolic surfaces, the work of this dissertation is especially

related to Buser’s and Schmutz Schaller’s work. We will discuss some of

their results and more background in the next chapters.

This thesis is divided into two main parts.

The first part (chapters 3 and 4) is dedicated to the study of maximal size

disks isometrically embedded in hyperbolic surfaces and hyperbolic two-

dimensional orbifolds. In particular, we are interested in finding a sharp

lower bound for the radius of a maximal embedded metric disk (the maxi-

mum injectivity radius) of hyperbolic two-dimensional orbifolds. We prove

the following result.

Theorem A. There exists and explicit constant ρT (ρT ≈ 0.187728 . . . )

such that the maximum injectivity radius of any hyperbolic two-dimensional

orbifold is at least ρT , with equality if and only if the orbifold is the sphere

with three cone points of order 2, 3 and 7.

Using this theorem, we deduce a result about hyperbolic surfaces and their

group of orientation preserving isometries (denoted Aut+(S)).

Theorem B. For any hyperbolic surface S, there exists a point p ∈ S which

is displaced at distance at least 2ρT by any ϕ ∈ Aut+(S) \ {id}.
Moreover, S is a Hurwitz surface (a closed surface with maximum number

of self-isometries) if and only if for every ρ > ρT and for every p ∈ S there

exists ϕ ∈ Aut+(S) \ {id} such that d(p, ϕ(p)) < 2ρ.

We also show how the techniques of the proof of Theorem A can be used

to give a new short proof of Theorem 4.1, a sharp lower bound for the

maximum injectivity radius of finite area hyperbolic surfaces, due to Yamada

(see [Yam82]).

The second part (chapters 5 and 6) is dedicated to the study of systoles of

hyperbolic surfaces and in particular to two basic problems: bounding the

length of systoles and the kissing number (the number of systoles).

In chapter 5, we prove an upper bound on the systole length of finite area

surfaces which does not depend on the number of cusps.

Theorem C. There exists a universal constant K < 8 such that any finite

area hyperbolic surface S of genus g ≥ 1 has systole length sys(S) satisfying

sys(S) ≤ 2 log g +K.

One of the main results of chapter 6 is an upper bound for kissing numbers

of finite area hyperbolic surfaces, depending on the systole length.
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Theorem D. Let S be a hyperbolic surface of signature (g, n), of systole

length sys(S) = `. Then its kissing number Kiss(S) satisfies

Kiss(S) ≤ 20 cosh
`

4
+ 200

e`/2

`
(2g − 2 + n).

Combining this results with the upper bounds for the length of the systole of

Theorem C and the one of Schmutz Schaller in [Sch94] (Theorem 5.4), we

obtain the following upper bound, independent on the length of the systole.

Theorem E. There exists a universal constant C > 0 such that any hyper-

bolic surface of signature (g, n) with g ≥ 1 satisfies

Kiss(S) ≤ C(g + n)
g

log(g + 1)
.

If S is a n-punctured sphere, then

Kiss(S) ≤ 7

2
n− 5.

To prove these results about the kissing number, we also study the intersec-

tion properties of systoles on hyperbolic surfaces. The results we obtain can

be summarized as follows.

Theorem F. Let S be a hyperbolic surface of signature (g, n) 6= (0, 3). If α

and β are systoles on S, then

i(α, β) ≤ 2

and if i(α, β) = 2, then either α or β surrounds two cusps. Furthermore,

for every genus g ≥ 0 there exists n(g) ∈ N and a surface S of signature

(g, n(g)) which has systoles that intersect twice.

Note: most of the results discussed in this dissertation can be found in

[Fan15] and [FP14].

The work of this thesis has been supported by the Swiss National Science Founda-

tion grant number PP00P2 128557 and by the U.S. National Science Foundation

grants DMS 1107452, 1107263, 1107367 “RNMS: Geometric Structures and Repre-

sentation Varieties” (the GEAR Network).





CHAPTER 2

Preliminaries

In this chapter we introduce the basic definitions of hyperbolic structures

on surfaces and we present some of their properties. We do not have any

pretence of completeness; rather, we would like to mention the basic tools

needed for the work to come and to give good references where these tools

are fully explained.

The main object of our interest are hyperbolic surfaces. A (hyperbolic) sur-

face is a connected surface with a complete, finite area hyperbolic metric (i.e.

a Riemannian metric of constant curvature −1). Unless otherwise stated,

we will assume surfaces to be orientable. Each hyperbolic surface is locally

isometric to the hyperbolic plane H2; models for this space are described in

section 2 of this chapter.

A more general class of surfaces with a hyperbolic structure is the one of

cone-surfaces. A cone-surface is a two-dimensional connected manifold, pos-

sibly with boundary, that can be triangulated by finitely many hyperbolic

triangles; if it has boundary, we require it to be geodesic. A cone point is

a point where the surface is not smooth. The cone angle at a cone point p

is the sum of all angles at p of triangles containing p. An admissible cone-

surface is a cone-surface such that all cone points have cone angle at most

π. If a cone point has cone angle 2π
k , for some positive integer k, we say

that it has order k. A (2-dimensional hyperbolic) orbifold is an admissible

cone-surface without boundary such that each cone point has integer order.

The signature of a cone-surface is the triple (g, n, b), where g is the genus,

n is the number of singular points (i.e. cusps and cone points) and b is the

number of boundary components. If b = 0, we will simply write (g, n).

Given a topological surface Σ of signature (g, n) with Euler characteristic

χ(Σ) = 2 − 2g − n < 0, there are many possible hyperbolic structures on

it. We denote by Mg,n the moduli space of Σ, i.e. the set of all complete,

finite area hyperbolic metrics on Σ, up to isometry. The orbifold moduli

space Og,n is the space of all orbifolds of signature (g, n), up to isometry. In

particular, since all hyperbolic surfaces are orbifolds, Mg,n ⊆ Og,n.

5



6 2. PRELIMINARIES

Notation: we will use dM ( , ) for the distance on a metric space M and

Dr(p) for the set of points at distance at most r from a point p ∈M :

Dr(p) = {q ∈M | dM (p, q) < r}.

Given a curve γ on M , we denote its length by `M (γ). If the metric space

that we are considering is clear from the context, we will simply use d( , )

instead of dM ( , ) and `( ) instead of `M ( ).

1. An interlude on orbifolds

We have defined (2-dimensional hyperbolic) orbifolds as two-dimensional

connected manifolds without boundary which can be triangulated by finitely

many hyperbolic triangles, with the property that each cone point has inte-

ger order (definition 1). This is a very explicit definition, based on simple

and well understood objects (hyperbolic triangles). Orbifolds though are

studied in a much more general context, without constraint on the dimen-

sion or on the geometric structure - see for instance [BH99, Chapter III.G].

Roughly speaking, orbifolds are defined to be topological manifolds that

are locally the quotients of simply connected manifolds by the action of fi-

nite groups. If the simply connected manifold carries a geometric structure

which is respected by the action of the finite groups, an orbifold can be

endowed with a geometric structure as well. Following this point of view, a

(2-dimensional hyperbolic) orbifold (definition 2) is a topological surface S

with a hyperbolic orbifold structure, that is:

(i) an open cover {Ui}i∈I of S,

(ii) for each i ∈ I, an open connected subset Xi of the hyperbolic plane, a

finite subgroup Γi of orientation preserving isometries of H2 fixing Xi

and a continuous map qi : Xi → Ui (a chart) such that qi induces a

homeomorphism between Xi

/
Γi

and Ui,

(iii) for all xi ∈ Xi and xj ∈ Xj such that qi(xi) = qj(xj), an isometry h of

H2 (called change of chart) and a neighborhood W of xi such that

qj ◦ h = qi

on W .

If all groups Γi are reduced to the identity (or more generally if they act

freely), we obtain a hyperbolic surface. Allowing these groups to have fixed

points is exactly what creates cone points.

Even though definition 2 can be generalized to many other contexts, it is

probably not the easiest to deal with. Another and more concrete way to

think about 2-dimensional hyperbolic orbifolds is to see them as quotients
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of hyperbolic surfaces, as follows. Given a hyperbolic surface S, its auto-

morphism group Aut+(S) is the group of orientation preserving isometries of

the surface. We can define a (2-dimensional hyperbolic) orbifold (definition

3) to be the quotient of a hyperbolic surface S by the action of a subgroup

Γ of Aut+(S). Even though less explicit than definition 1, this third defini-

tion shows how we are naturally led to study orbifolds if we are interested

in hyperbolic surfaces and their symmetries. Moreover, hyperbolic surfaces

can be obtained as quotients of the hyperbolic plane by the action of some

discrete group of isometries of H2. Thus definition 3 easily implies that also

orbifolds are quotient of H2 by the action of some discrete group of isome-

tries. While for surfaces the group action should be free, this is not required

for orbifolds, and cone points appear when we have fixed points.

These three definitions are equivalent, and we dedicate the rest of this section

to proving it.

Definition 1 ⇒ Definition 2

Suppose S satisfies definition 1. We can choose a cover of S given by simply

connected disks Di = {x ∈ S | d(x, xi) < ri}, for some xi ∈ S and ri > 0,

such that

(i) each disks contains at most one cone point, and

(ii) if Di contains a cone point y, then xi = y.

For every i, Xi can be taken to be a disk of radius ri in H2. If Di doesn’t

contain a cone point, we can set Γi = {id} and qi to be an isometry between

Xi and Di. If Di contains a cone point of order k, we define Γi to be the

group generated by a rotation of order k with center the center of the disk

and qi to be the projection map. Since all charts are branched covering maps

and local isometries outside of the cone points, each change of charts can be

chosen to be an isometry of the hyperbolic plane. This defines a hyperbolic

orbifold structure on S, thus S satisfies definition 2.

Definition 2 ⇒ Definition 3

For this implication we refer to the following theorem in [BH99, Chapter

III.G]:

Theorem 2.1. Let Q be a connected orbifold with a (G, Y )-geometric struc-

ture. Then there is a subgroup Γ of G acting properly on a connected

manifold M endowed with a (G, Y )- structure such that Q with its (G, Y )-

structure is naturally the quotient of M by the action of Γ.

In our case, the G = Isom+(H2) and Y = H2, so that Q is a 2-dimensional

hyperbolic orbifold as in definition 2 and M is a hyperbolic surface.
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Definition 3 ⇒ Definition 1

Suppose that S is the quotient of a hyperbolic surface F by the action of a

subgroup Γ of Aut+(F ). Since by Hurwitz theorem Aut+(F ) is finite, the

possible non-smooth points of S are cone points of integer order. Moreover,

consider a Γ-invariant triangulation T of F with vertex set given by the

cusps of F and the fixed points of Γ. Then the quotient triangulation T
/

Γ
gives a decomposition of S in triangles as requested. All isometries of Γ

are orientation preserving and F doesn’t have boundary, so S doesn’t have

boundary either and it is an orbifold according to definition 1.

2. Models for the hyperbolic plane and hyperbolic trigonometry

As we already mentioned, the local geometry of hyperbolic surfaces and

of cone-surfaces (outside of cone points) is modeled on the hyperbolic plane

H2. In this section we present two classical models for H2 and some formulas

that can be deduced using these.

One of the standard models is the upper half-plane one. Its set of points is

U = {z ∈ C | Im(z) > 0}

and the metric is defined by

ds =
|dz|

Im(z)
.

Geodesics are easy to describe in this model: they are either Euclidean verti-

cal half lines or Euclidean half circles orthogonal to the real axis. The group

of orientation preserving isometries of U is PSL(2,R), acting as Möbius

transformation on the upper half-plane:

PSL(2,R)× U 3 (A, z) 7→ A · z =

(
a b

c d

)
· z =

az + b

cz + d
∈ U.

To generate the full group of isometries we just need to add the map z 7→ −1
z̄ .

We can also explicitly give the distance between two points z and w in U:

cosh d(z, w) = 1 +
|z − w|2

2 Im(z) Im(w)
.

It is often useful to consider also the points at infinity of the hyperbolic

plane, which we can think of as directions of geodesics. In this model, the

circle of points at infinity is given by R ∪ {∞}.

Another standard model is the Poincaré disk model: in this case, the set of

points is given by

D = {z ∈ C | |z| < 1}
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and the metric is

ds =
2|dz|

1− |z|2
.

Here geodesics are diameters of the disk or arcs of Euclidean circles orthog-

onal to the boundary of D. The orientation preserving isometries are given

by maps of the form

z 7→ az + c̄

cz + ā

where a and b are complex numbers with |a|2−|c|2 = 1, and we can add the

map z 7→ z̄ to generate the full group of isometries.

Again, we have a formula for the distance between two points z and w in D:

sinh2 d(z, w)

2
=

|z − w|
(1− |z|2)(1− |w|2)

.

Moreover, the boundary at infinity is the (Euclidean) boundary of the disk,

i.e. {z ∈ C | |z| = 1}.

The models we introduced allow us to deduce a variety of results about sets

in the hyperbolic plane. We mention some of them, the ones which will

be fundamental for proofs in the sequel. To lighten the notation, in the

remaining of this section we will not distinguish between a segment and its

length.

The first facts are about hyperbolic triangles, quadrilaterals and hexagons.

They can be found, among many other formulas about hyperbolic polygons,

in Chapter 2 of [Bus10].

Proposition 2.2. Let T be a hyperbolic triangle with angles α, β, γ and

corresponding opposite sides a, b, c. The following formulas hold.

(a) cosh c = − sinh a sinh b cos γ + cosh a cosh b

(b) cos γ = sinα sinβ cosh c− cosα cosβ

(c)
sinhα

sin a
=

sinhβ

sin b
=

sinh γ

sin c
.

In particular, we can deduce simpler formulas for right-angled hyperbolic

triangles.

Proposition 2.3. Let T be a hyperbolic triangle as in Proposition 2.2. If γ

is a right angle, the following formulas hold.

(a) cosh c = cosh a cosh b

(b) cosh c = cotα cotβ

(c) sinh a = sinα sinh c

(d) sinh a = cotβ tanh b

(e) cosα = cosh a sinβ

(f) cosα = tanh b coth c.
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A trirectangle is a quadrilateral with three right angles. Denote by ϕ the

fourth angle, by α and β the two sides adjacent to ϕ and by a (respectively,

b) the side opposite to α (respectively, β).

Figure 1. A trirectangle

Proposition 2.4. For a trirectangle as above, the following holds.

(a) cosϕ = sinh a sinh b

(b) cosϕ = tanhα tanhβ

(c) cosh a = coshα sinϕ.

Given a right-angled hexagon, name the sides as in the following picture.

Figure 2. A right-angled hexagon

Proposition 2.5. For a right-angled hexagon as above,

cosh c = sinh a sinh b cosh γ − cosh a cosh b.

The other result we will need is about hyperbolic disks and can be found in

[Bea83, Chapter 7].

Proposition 2.6. (a) The area of a hyperbolic disk of radius r is

2π(cosh r − 1).

(b) Given a hyperbolic triangle T of angles α, β and γ, there exists a unique

inscribed circle, whose radius R satisfies

tanh2R =
cos2 α+ cos2 β + cos2 γ + 2 cosα cosβ cos γ − 1

2(1 + cosα)(1 + cosβ)(1 + cos γ)

and

tanhR ≥ 1

2
sin

area(T )

2
.
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The results of Propositions 2.2, 2.3, 2.4 and part (a) of Proposition 2.6, can

be proved by direct computation in the upper half-plane or the Poincaré

disk model. For part (b) of Proposition 2.6, we first need to prove that the

three bisectors of a triangle meet in a point. Then we can use Proposition

2.3 to deduce the formula and the estimate for the radius.

For more details on what above and for a lot more about the hyperbolic

plane, we refer to Beardon’s book The Geometry of Discrete Groups [Bea83],

Chapter 7 in particular.

3. Some basic properties of simple closed curves

In the study of hyperbolic structures on surfaces, simple closed curves and

simple closed geodesics play a very important role. This section is dedicated

to some basic definitions and results, both classical and recent.

A simple closed curve α on a (topological) surface S is called non-trivial if it

represents a non-trivial element of the fundamental group. It is essential if it

is non-trivial and no component of S\α is a once-punctured disk. Given two

simple closed curves α and β, their (geometric) intersection number i(α, β)

is the minimum number of transverse intersections between a representative

of the free homotopy class of α and a representative of the free homotopy

class of β. The curves α and β are in minimal position if

i(α, β) = |α ∩ β|.

The bigon criterion (see [FM12, Chapter 1]) gives a characterization of

curves in minimal position. We say that two transverse simple closed curves

α and β form a bigon if there is an embedded disk in S whose boundary is

given by the union of an arc of α and an arc of β, intersecting in exactly

two points. The following holds.

Theorem 2.7. (The bigon criterion) Two transverse simple closed curves

α and β are in minimal position if and only if they do not form any bigon.

In particular, this implies that if two simple closed curves intersect transver-

sally in exactly one point, they are in minimal position (and their intersec-

tion number is one).

If we consider curves on cone-surfaces, we will assume that they do not pass

through the cone points and the definitions above will be referred to the

topological surface S \ X, where S is the cone-surface and X is the set of

cone points.

3.1. Curves on hyperbolic surfaces. This section contains some

classical facts about simple closed curves and geodesics on hyperbolic sur-

faces. Since in the next session we will prove most of the statements in
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the case of admissible cone-surfaces, here we will just state the results. For

proofs, and also for much more about (curves on) hyperbolic surfaces, we

refer to Buser’s book Geometry and Spectra of Compact Riemann Surfaces

[Bus10]. This book, together with Beardon’s [Bea83], has been and most

likely will be a faithful and very useful companion, and I hope it can be the

same for the interested reader.

The first theorem in this section describes the correspondence between ho-

motopy classes of simple closed curves and simple closed geodesics.

Theorem 2.8. Let S be a hyperbolic surface.

(a) Each essential simple closed curve α on S is homotopic to a unique

simple closed geodesic, denoted by G(α).

(b) G(α) realizes the minimum length among curves in the homotopy class

of α.

(c) Given two essential simple closed curves α and β, either G(α) = G(β)

or |G(α) ∩ G(β)| = i(α, β) ≤ |α ∩ β|.

Note that part (c) of Theorem 2.8 tells us that two simple closed geodesics

are in minimal position. Indeed, two simple closed geodesics cannot form a

bigon (which follows from the fact that two distinct geodesics in the hyper-

bolic plane cannot form a bigon).

A very useful theorem on simple closed geodesics is the collar lemma, which

describes the geometry of a neighborhood of a simple closed geodesic (see the

papers of Keen [Kee74], Randol [Ran79] and Buser [Bus78], and Buser’s

book [Bus10]). More precisely, given a simple closed geodesic γ we define

the associated collar to be

C (γ) = {p ∈ S | d(p, γ) < w(γ)} ,

where

w(γ) = arcsinh
1

sinh `(γ)
2

.

For every cusp c, we denote by Hc the open horoball region of area 2.

Theorem 2.9. (Collar lemma) Let S be a hyperbolic surface of signature

(g, n). Let c1, . . . , cn be the cusps of S and {γ1, . . . , γk} be a set of pairwise

disjoint simple closed geodesics. Then:

(a) The collars C (γi) and the horoballs Hcj are all disjoint.

(b) Each C (γi) is isometric to the cylinder [−w(γi), w(γi)] × S1 with the

Riemannian metric ds2 = dρ2 + `(γi)
2 cosh2 ρ dt2.

(c) Each Hcj is isometric to the quotient {z ∈ C | Im(z) > 1/2}
/

Γ , where

Γ is the group generated by T : z 7→ z+ 1 acting on the upper half-plane

by isometries.
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Note that since the collars are embedded cylinders, if α and β are simple

closed geodesics with i(α, β) = n, then `(β) ≥ 2nw(α). This means that if

one of the two is very short, the other must be very long. In particular, all

simple closed geodesics of length less than 2 arcsinh 1 are pairwise disjoint.

We will also be interested in pants decompositions, i.e. maximal sets of dis-

joint simple closed geodesics, and pairs of pants, i.e. hyperbolic surfaces of

signature (0, 3). Topologically, a pair of pants is simply a three-holed sphere.

Often, a pair of pants is defined to be a (topological) three-holed sphere,

without any request on the geometry. We use the more restrictive definition

above, since it will simplify some statements. If we want to consider the

topological version, we will talk about topological pair of pants. A topological

pants decomposition will be a maximal set of pairwise disjoint and non-

homotopic essential simple closed curves. Note that by Theorem 2.8, to each

topological pair of pants (respectively, topological pants decomposition) we

can associate a unique pair of pants (respectively, pants decomposition).

We have the following.

Proposition 2.10. Let S be a hyperbolic surface of signature (g, n) and

γ1, . . . , γk be pairwise disjoint simple closed geodesics. Then

k ≤ 3g − 3 + n

and there exist simple closed geodesics γk+1, . . . , γ3g−3+n such that

{γ1, . . . , γ3g−3+n}

is a pants decomposition. Moreover, each pants decomposition decomposes

S into a union of 2g − 2 + n pairs of pants.

3.2. Curves on admissible cone-surfaces. In the case of admissible

cone-surfaces, we can generalize some of the results of Section 3.1. For this,

we need to consider a more general type of curves.

An admissible geodesic of the first type is a simple closed geodesic. An

admissible geodesic of the second type is a curve obtained by following back

and forth a simple geodesic between two cone points of order two. Note that

if we cut open along an admissible geodesic of the second type we obtain a

boundary component which is a simple closed geodesic.

Let X be the set of all cone points of an admissible cone-surface S. Given

an admissible geodesic of the second type δ, we define δε to be the boundary

of an ε-neighborhood of δ, for ε > 0 small enough so that δε is a simple

closed curve, contractible in (S \X) ∪ δ. We say that a simple closed curve

γ is homotopic to δ if it is homotopic to δε on S \X.
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Figure 3. An admissible geodesic of the second type and a

simple closed curve homotopic to it

The following theorem, which generalizes Theorem 2.8, gives a correspon-

dence between homotopy classes of simple closed curves and admissible

geodesics.

Theorem 2.11. Let S be an admissible cone-surface and X the set of cone

points of S.

(1) Each essential simple closed curve α on S \X is homotopic to a unique

admissible geodesic, denoted G(α).

(2) G(α) realizes the minimum length among curves homotopic to α.

(3) Given two essential simple closed curves α and β on S\X, either G(α) =

G(β), or |G(α) ∩ G(β)| ≤ |α ∩ β|.

Note that in the case of admissible cone-surfaces without cone points of order

two, there is no need to introduce admissible geodesics of second type and

the correspondence is again between homotopy classes of essential simple

closed curves and simple closed geodesics, as in the classical case. This has

been proven by Dryden and Parlier in [DP07] (for compact surfaces, but

their techniques extend to the non compact case as well).

Moreover, part (1) of Theorem 2.11 has been stated in a slightly differ-

ent form in by Tan, Wong and Zhang in [TWZ06]. We will give here an

alternative and more detailed proof.

Proof of Theorem 2.11. We start by proving parts (1) and (2). Sup-

pose first that α is homotopic to an admissible geodesic of the second type

G(α).

We begin by proving that

inf{`(α′) |α′ is homotopic to α} = `(G(α)).

Let αε be the curve obtained as the boundary of an ε-neighborhood of G(α).
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Consider α′ homotopic to α. If it is not simple, by a result of Hass and Scott

[HS85] it forms a bigon or a 1-gon (a disk bounded by an arc of α′ starting

and ending at the same point and with no other self-intersection), so we can

shorten it. Thus we can assume that α′ is a simple closed curve. If it crosses

G(α), then for all ε > 0 small enough α′ is homotopic to αε and α′ and αε
intersect transversally. But α′ and αε are homotopic, so their intersection

number is zero. This implies that they are not in minimal position and, by

the bigon criterion, they form a bigon. As a consequence, an arc of α′ and an

arc of G(α) bound a disk; as G(α) is geodesic, this means that we can shorten

α′. We can then assume that α′ is a simple closed curve which doesn’t cross

G(α), so α′ determines a curve on the cone-surface obtained by cutting open

along G(α), and by standard hyperbolic geometry `(α′) ≥ `(G(α)). So

inf{`(α′) |α′ is homotopic to α} ≥ `(G(α)),

and we have equality since `(αε) tends to `(G(α)) for ε going to zero.

We still need to show that G(α) is unique, i.e. that α is not homotopic to

any other admissible geodesic. By contradiction, suppose α is homotopic to

another admissible geodesic γ. If we cut along γ and G(α) we get a subset

of a hyperbolic cylinder with two simple closed geodesics as boundary. This

is impossible, so G(α) is unique.

We can now assume that α is not homotopic to any admissible geodesic

of the second type. Let {αn}n∈N be a sequence of curves homotopic to α,

αn ⊂ S \X, such that `(αn) converges to inf{`(α′)) |α′ is homotopic to α}.
Since their length is converging, there is a open subset C of S, given by the

union of small open neighborhoods of the cusps, such that the curves αn
are contained in the compact subset S \C. If we parametrize all the curves

on the same interval with constant speed, by Arzelà–Ascoli Theorem (see

for instance [Bus10, Appendix]) we get (up to passing to a subsequence) a

limit curve G(α) in S \ C, homotopic to α, such that

`(G(α)) = inf{`(α′)) |α′ is homotopic to α}.

Since the curve is length minimizing, it is simple (again by Hass and Scott’s

result in [HS85]) and geodesic outside the cone points. Suppose now that

G(α) passes through a cone point p. Then both angles that G(α) forms at

p are strictly less than π, so it can be shortened while staying in the same

homotopy class. This is a contradiction to the minimality of `(G(α)). Hence

G(α) is a simple closed geodesic. If there is another simple closed geodesic γ

homotopic to α, cut along γ and G(α). We obtain a hyperbolic cylinder with

two distinct simple closed geodesics as boundary, a contradiction. Hence the

uniquess of G(α).

We now show part (3). Assume G(α) and G(β) are distinct. Since they are

geodesics, they do not form any bigons.
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Suppose G(α) and G(β) are simple closed geodesics. By the bigon criterion

they intersect minimally and

|G(α) ∩ G(β)| = i([α], [β]) ≤ |α ∩ β|.

If G(α) is an admissible geodesic of the second type and G(β) is a simple

closed geodesics (or vice versa), we can choose a curve α′ ∈ [α] in a small

neighborhood of G(α) such that it doesn’t form any bigons with G(β). So

|α′ ∩ G(β)| = i([α], [β]) ≤ |α ∩ β|.

Since every intersection of G(α) and G(β) corresponds to at least two inter-

sections of α′ and G(β), we have

|G(α) ∩ G(β)| ≤ |α′ ∩ G(β)| ≤ |α ∩ β|.

If G(α) and G(β) are admissible geodesics of the second type, we consider

Figure 4. G(α), G(β) and the curve α′

two curves α′ and β′ in small neighborhoods of the geodesics and we apply

a similar argument to the one above. �

Also for cone-surfaces we will be interested in decompositions into three-

holed spheres; we define a (generalized) pants decomposition to be a maximal

set of pairwise disjoint admissible geodesics. A (generalized) pair of pants is

an admissible cone-surface of signature (0, n, b), with n + b = 3. A pair of

pants will be called:

• a Y-piece if it has three simple closed curves as boundary,

• a V-piece if it has two simple closed curves and a singular point as

boundary,

• a joker’s hat if it has two singular points and a simple closed curve

as boundary,

• a triangular surface if it has three singular points as boundary.

The corresponding result to Proposition 2.10 is the following.
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Proposition 2.12. Let S be an admissible cone-surface of signature (g, n, b)

and γ1, . . . , γk be pairwise disjoint admissible geodesics. Then

k ≤ 3g − 3 + n+ b

and there exist admissible geodesics γk+1, . . . , γ3g−3+n+b such that

{γ1, . . . , γ3g−3+n+b}

is a pants decomposition. Moreover, each pants decomposition decomposes

S into a union of pairs of pants.

Proof. Let X be the set of cone points of S. We associate to γ1, . . . , γk
a set {γ′1, . . . γ′k} of pairwise disjoint simple closed curves on S \ X such

that G(γ′i) = γi for every i. Then the γ′is are pairwise non-homotopic on

S \ X. Since S \ X is homeomorphic to a surface of genus g with n + b

points removed, k ≤ 3g − 3 + n + b and there exist simple closed curves

γ′k+1, . . . , γ
′
3g−3+n+b on S \ X, disjoint and not homotopic to any γ′i such

that {γ′1, . . . , γ′3g−3+n+b} is a topological pants decomposition of S \X. Let

γj = G(γ′j) for every j ∈ {k + 1, . . . , 3g − 3 + n + b}. By Proposition

2.11, the set {γ1, . . . , γ3g−3+n+b} is a pants decomposition of S. Moreover,

since {γ′1, . . . , γ′3g−3+n+b} decomposes S \X into topological pairs of pants,

{γ1, . . . , γ3g−3+n+b} decomposes S into pairs of pants. �

Note that in the case of admissible cone-surfaces, the number of pairs of

pants obtained by cutting along a pants decomposition is not determined

by the signature. For example, consider a sphere with four cone points, two

of order 2 and two of order 3. We can choose two different curves, each

forming a pants decomposition; one decomposes the orbifold into two pairs

of pants and the other into one, as in the following picture:

Figure 5. Two pants decompositions with different number

of pairs of pants

We would also like to have a corresponding result to Theorem 2.9. Un-

fortunately, as remarked by Dryden and Parlier in [DP07], this cannot be

generalized to all admissible cone-surfaces, as two cone points of order two

can be arbitrarily close to each other or to another simple closed geodesic.

On the other hand, Dryden and Parlier show that one can generalize this
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result in the case of cone-surfaces where all cone points have total angle

strictly less than π. They prove the following:

Theorem 2.13. Let S be a compact cone-surface of genus g with n cone-

points p1, . . . , pn with total angles 2ϕ1, . . . , 2ϕn. Let 2ϕ be the largest total

angle, and assume 2ϕ < π. Let γ1, . . . , γk be disjoint simple closed geodesics

on S. Then the following hold:

(a) The collars

C(γi) =

{
p ∈ S | d(p, γk) ≤ ai = arcsinh

cosϕ

sinh `(γk)
2

}
and

C(pj) =

{
p ∈ S | d(p, pj) ≤ bj = arccosh

1

sinϕj

}
are pairwise disjoint.

(b) Each C(γi) is isometric to the cylinder [−ai, ai]×S1 with the Riemannian

metric ds2 = dρ2 + `(γi)
2 cosh2 ρ dt2.

(c) Each C(pj) is isometric to the hyperbolic cone [0, bj ]× S1 with the Rie-

mannian metric ds2 = dρ2 +
ϕ2
j

π2 sinh2 ρ dt2.



CHAPTER 3

Maximum injectivity radius of orbifolds

Among the objects that give us information on hyperbolic structures on sur-

faces, we are especially interested in embedded disks. In particular, we can

ask the following: given a hyperbolic orbifold, how big can an isometrically

embedded disk be? Is there a disk we can embed in any orbifold?

It is quite easy to see that the answer to the second question is yes. Indeed,

one can show that there is some positive constant A such that each orbifold

contains an embedded triangle of area at least A. Then by Proposition

2.6, this triangle, and hence any orbifold, contains an embedded disk of

some radius r depending only on A. What is much more challenging is to

actually compute a sharp lower bound and to show which orbifolds realize

the bound; this problem is the subject of this chapter. We start with the

necessary definitions to state precisely the question we are interested in.

Let S be an admissible cone-surface; for every point p ∈ S, the injectivity

radius at p is

rp := max{r ≥ 0 |Dr(p) is isometric to an open disk of radius r in H2}.

We define the map

r : S → R

p 7→ rp.

Lemma 3.1. The map r is continuous and admits a global maximum.

Proof. Let ε > 0 be small. If d(p, q) < ε, then rq ≥ rp − ε, because

Drp−ε(q) is embedded in Drp(p); conversely rp ≥ rq − ε. So |rp − rq| ≤ ε

and the map r is continuous.

If there is no cusp, S is compact and r has a maximum. If there are any

cusps, note that the injectivity radius becomes smaller while getting closer

to the cusp. So

sup
p∈S

rp = sup
p∈C

rp

for some compact set C in S obtained by taking away suitable open horoballs.

Again, we get that r has a maximum. �

19
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We define the maximum injectivity radius of an admissible cone-surface S

to be

r(S) := max
p∈S

rp.

The problem we are interested in is finding a sharp lower bound for the

maximum injectivity radius of all orbifolds.

We will first work with triangular surfaces, for which we will be able to

actually give an implicit formula for the maximum injectivity radius as a

function of the cone angles. We will then show that the proper lower bound

is a lower bound for all orbifolds.

1. Triangular surfaces

Recall that a triangular surface is an admissible cone-surface of signature

(0, 3). Every triangular surface can be obtained by gluing two hyperbolic

triangles of angles α, β and γ, all less or equal to π
2 ; we denote the corre-

sponding admissible cone-surface by Sα,β,γ . We call A, B and C the vertices

of the triangles corresponding to α, β and γ respectively and a, b and c

the opposite sides (or the lengths of the sides). Such a decomposition in

triangles in unique. Moreover, every triangle is uniquely determined (up to

isometry) by its angles. So the moduli space of triangular surfaces is

M =
{

(α1, α2, α3) ∈
[
0, π2

]3 | ∑3
i=1 αi < π

}/
Sym(3) ,

where the action of the symmetric group Sym(3) on the set of triples is given

by

(σ, (α1, α2, α3)) 7→ (ασ(1), ασ(2), ασ(3)).

When dealing with surfaces with cusps, it is often useful to consider horoball

regions associated to the cusps. The first result we need is about how big

a horoball embedded in a triangular surface can be, in terms of the cone

angles.

Lemma 3.2. If a triangular surface S contains a cusp and two singular

points with total angles 2θ1 and 2θ2, the associated horocycle of length h(S)

is embedded in S, where

h(S) :=
4√

1 + 1
R(0,θ1,θ2)

and

R(0, θ1, θ2) = arctanh
cos θ1 + cos θ2

2
√

(1 + cos θ1)(1 + cos θ2)

is the radius of the inscribed disk in a triangle with angles 0, θ1 and θ2.
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Proof. Consider T , one of the two triangles that form S, and let p be

the center of the inscribed disk in T . Consider the horocycle passing through

the points on b and c at distance R(0, θ1, θ2) from p. This is an embedded

horocycle and direct computation shows that it is longer than h(S). �

Notation: if A (respectively, B, C) is a cusp, we denote hA (respectively,

hB, hC) the associated horocycle of length h(S).

1.1. The maximum injectivity radius of triangular surfaces. Let

us fix the angles α, β and γ and denote Sα,β,γ simply by S. For any point p

on the surface, we have a maximal embedded disk centered at p, i.e. Drp(p).

The maximality implies that either a cone point of order two belongs to

∂Drp(S), or there is a point p on the boundary and two distinct radii from

p to q. In the second case, we say that the disk is tangent to itself in q.

For every point where Drp(p) is tangent to itself, the two radii form a sim-

ple loop, which is geodesic except in p. Its length is 2rp and it is length-

minimizing in its class in π1(S \ {A,B,C}, p) (otherwise the disk would be

overlapping at q).

If there is a cone point of order two, say A, and it belongs to the boundary

of Drp(p), we associate a loop obtained by traveling from p to A and back

on the length realizing geodesic between these two points. Clearly, this loop

has length 2rp.

Figure 1. A tangency point and its associated loop

Now, let us forget disks for some time and concentrate on defining and

studying loops of the type described just above. Fix a non-singular point p

and consider one corner, say A. We define the associated loop γA to be:

• if A is a cone point of order two, the curve that traces the length

realizing geodesic between p and A from p to A and back;

• otherwise, the simple loop based at p, going around A, and geodesic

except at p.
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We need to show that γA is well defined, i.e. that there exists a unique

associated loop (if A is not a cone point of order two, otherwise it is already

clear). This is proven in the following lemma.

Lemma 3.3. Suppose A is not a cone point of order two. Then there exists

a unique simple loop γA based at p, going around A, geodesic except at p.

Moreover, it is length minimizing in its class in π1(S \ {A,B,C}, p).

Proof. Consider the class C ∈ π1(S \ {A,B,C}, p) of a simple closed

curve with base point p that goes around A. We first show the uniqueness

of γA. Suppose then γA is a simple loop in C, geodesic except at p. Then it

doesn’t cross the length-realizing geodesic between p and A, otherwise they

would form a geodesic bigon. We can cut along the geodesic; γA is given by

the unique geodesic between the two copies of p on the cut surface.

We show now that γA exists and is length-minimizing. Let γn be a sequence

of smooth curves in C with lengths converging to inf{`(γ) | γ ∈ C}. If there

is any cusp on S, since the length of the curves γn is bounded above, we can

assume that they are contained in a compact subset of S. By the Arzelà–

Ascoli Theorem (see [Bus10, Theorem A.19]) we get a limit curve γA. Note

that γA doesn’t contain A: it is clear if A is a cusp, while if α > 0 and γA
passes through A, it forms an angle at A smaller or equal to 2α < π, so it

can be shortened to a curve in C, contradiction. In particular, γA ∈ C. By

the minimality, γA is simple and geodesic except at p. �

In the next lemma we show that γA is length minimizing in its class also if

A is a cone point of order two.

Lemma 3.4. Suppose A is a cone point of order two and let C be the class

in π1(S \ {A,B,C}, p) of a simple loop around A and based at p. Then

`(γA) = inf{`(γ)|γ ∈ C}.

Proof. Consider γ ∈ C. If it crosses γA, the two curves form a bigon

and γ can be shortened while staying in the same homotopy class. So, to

compute inf{`(γ) | γ ∈ C} we can consider curves γ which do not cross γA.

We cut along γ and γA and we get a subset of H2 bounded by two curves

between two copies of P : the first one is a geodesic given by γA and the

second one is given by γ, hence `(γ) ≥ `(γA). One can construct curves in

the class with length arbitrarily close to `(γA), so the infimum is `(γA). �

Notation: `A := `(γA), `B := `(γB) and `C := `(γC). By α̃ (respectively,

β̃, γ̃) we denote the acute angle of γA (respectively, γB, γC) at p.

Clearly, for α = π
2 , the length is twice the distance d(p,A). So `A increases

(continuously) when d(p,A) increases.
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Figure 2. Cutting along γA for A cone point of order two

If α = 0, i.e. if A is a cusp, consider the horocycle hA. Cut along the loop

itself and the geodesic from p to the cusp. We represent the triangle we

obtain in the upper half plane model of H2, choosing A to be the point at

infinity. Note that the geodesic between p and the cusp is the bisector of α̃.

By Proposition 2.3, we get

1 = cosh
`A
2

sin
α̃

2
.

Let dhA(p) be d(p, hA), if p doesn’t belong to the horoball bounded by hA,

and −d(p, hA) otherwise. By direct computation we get that `A is a continu-

ous monotone decreasing function of α̃, so a continuous monotone increasing

function of dhA(p). If α ∈
(
0, π2

)
, we cut along the geodesic from p to A and

Figure 3. The loop around a cusp in the upper half plane

we get an isosceles triangle. Again, the geodesic from p to A is a bisector of

α̃. By Proposition 2.3, we obtain the equations

cosα = cosh
`A
2

sin
α̃

2

and

sinh
`A
2

= sinα sinh d(p,A).

In particular, `A is a continuous monotone increasing function of d(p,A).
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Figure 4. The triangle associated to the loop for α ∈
(
0, π2

)

So, for p ∈ S, we can define

distA(p) =

{
d(p,A) if α 6= 0

dhA(p) if α = 0

Similarly for B and C. We have just proven the following:

Lemma 3.5. The length `A (resp. `B, `C) is a continuous monotone increas-

ing function of distA(p) (resp. distB(p), distC(p)).

Now, given a point p on the surface, we can cut along the loops γA, γB and

γC . If there is no cone point of order two, we obtain four pieces: three of

them are associated each to a singular point, and the fourth one is a triangle

of side lengths `A, `B and `C .

If there is a cone point of order 2, we get only three pieces: two associated

to the other singular points and again a triangle of side lengths `A, `B and

`C .

Figure 5. S cut along the three loops: (i) without cone

points of order two, (ii) with A a cone point of order two
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We now want to relate the lengths `A, `B and `C with the injectivity radius

in a point. We first need two lemmas.

Lemma 3.6. Given a triangular surface S, a non-singular point p ∈ S and

its three associated loops, we have

rp = min

{
`A
2
,
`B
2
,
`C
2

}
.

Proof. Denote m := min
{
`A
2 ,

`B
2 ,

`C
2

}
.

We already remarked that either Drp(p) is tangent to itself in at least a

point or its boundary contains a cone point of order 2. In both situations,

we get a loop at p of length 2rp. So rp ≥ m.

To prove the other inequality, suppose γA is the shortest of the three loops,

i.e. `A = 2m. If α = π
2 , then rp ≤ d(p,A) = `A

2 = m, since an embedded

disk cannot contain a singular point. Otherwise, if α < π
2 , consider the point

q on γA at distance `A
2 = m from p. Every disk of radius bigger than `A

2

overlaps in q, hence again rp ≤ m. �

Let T ⊆ H2 be a hyperbolic triangle with angles α, β, γ at most π
2 . If α = 0,

consider a horocycle HA based at A such that

`(HA ∩ T ) =
1

2
h(α, β, γ).

For p ∈ H2, we define distA(p), distB(p) and distC(p) as before in the case

of a triangular surface, with HA instead of hA.

Lemma 3.7. Let T ⊆ H2 be a hyperbolic triangle and p, p′ ∈ T . If
distA(p′) ≥ distA(p)

distB(p′) ≥ distB(p)

distC(p′) ≥ distC(p)

then p = p′.

Proof. Consider a corner, say A (similarly for B and C): we define

CA := {q ∈ H2 |distA(q) = distA(p)}

DA := {q ∈ H2 | distA(q) ≤ distA(p)}.

So p ∈ CA ∩ CB ∩ CC ⊆ DA ∩ DB ∩ DC .

Note that if A is not an ideal point, CA is a circle and DA is the disk bounded

by CA. If A is an ideal point, CA the horocycle based at A passing through

p and DA is the associated horoball. In any case, DA is a convex set.

Let D be the union DA ∪ DB ∪ DC . Since D is star-shaped with respect to

p and it contains the three sides, T ⊆ D.
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Consider now p′ ∈ T with
distA(p′) ≥ distA(p)

distB(p′) ≥ distB(p)

distC(p′) ≥ distC(p)

Then

p′ ∈ T \ (D̊A ∪ D̊B ∪ D̊C).

Since T ⊆ D we have p′ ∈ CA∩CB∩CC . We show that CA∩CB∩CC is only one

point, hence p = p′. Suppose by contradiction that the intersection contains

two points. In the Poincaré disk model, CA, CB and CC are Euclidean circles,

so if they intersect in two points, these should both belong to the boundary

of D. In particular p ∈ T ∩ ∂D ⊆ ∂T . Suppose without loss of generality

p ∈ c; then the circles CA and CB are tangent in p, so they intersect only in

one point. As a consequence, CA ∩ CB ∩ CC can contain at most one point,

a contradiction. �

We are finally ready to characterize points with maximum injectivity radius.

Proposition 3.8. Given a point p ∈ S, the following are equivalent:

(1) p is a global maximum point for the injectivity radius,

(2) p is a local maximum point for the injectivity radius,

(3) the three loops at p have the same length 2rp.

Moreover, there are exactly two global maximum points.

Proof. (1)⇒ (2) Clear.

(2)⇒ (3) By contradiction, suppose only one or two loops have length 2rp.

Without loss of generality, assume `A ≤ `B ≤ `C ; by Lemma 3.6, rp = `A
2 .

If only one loop has length 2rp, then `A < `B ≤ `C . Let us consider the

geodesic segment between p and A. Every point p′ on the prolongation

of the geodesic segment after p satisfies distA(p′) > distA(p). Thus every

such p′ has a longer loop around A. By continuity of the lengths of the

loops, for points that are sufficiently close to p the loop around A is still the

shortest. These points have injectivity radius bigger than rp, i.e. p is not a

local maximum point.

If two loops have length 2rp, we have `A = `B < `C ; we choose this time the

orthogonal l from p to the side c. Every point p′ on l that is further away

from c then p satisfies distA(p′) > distA(p) and distB(p′) > distB(p).

So like before, every point on l in a small enough neighborhood of p has

bigger injectivity radius than rp and again p is not a local maximum point.
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Figure 6. P with the orthogonal to c

(3) ⇒ (1) Suppose `A = `B = `C = 2rp and suppose by contradiction that

p isn’t a global maximum point. Then there exists q with rq > rp. Let

ψ be the orientation reversing isometry that exchanges the two triangles

forming S and fixes the sides pointwise. By possibly replacing q with ψ(q),

we can assume q belongs to the same triangle as p. Since rq > rp, the

loops at q are strictly longer than the ones at p. So distA(q) > distA(p),

distB(q) > distB(p) and distC(q) > distC(p), in contradiction with Lemma

3.7.

We still have to show that there are exactly two global maximum points.

With similar arguments as the ones above, if two points p and p′ on one

triangle are global maximum points for the injectivity radius, then p = p′.

So we have at most one global maximum point per triangle. To conclude

that there are exactly two global maximum points, it is enough to show

that a global maximum point cannot belong to a side. Suppose it does and

assume, without loss of generality, p ∈ c. Since the geodesics from A to p

and from B to p are bisectors of α̃ and β̃ respectively, the loops γA and γB
meet the sides b and a orthogonally. So d(p, a) = d(p, b) = rP . Let q and q′

be the intersections of γC with a and b. Then

2rp = `C > d(p, p) + d(p, q′) ≥ d(p, a) + d(p, b) = 2rp,

a contradiction. �

Now that we have established a criterion to detect points with maximum

injectivity radius, we want to transform it into a system of equations, which

will give us an implicit formula for r(S).

Suppose first α, β, γ < π
2 , and let p be a maximum for the injectivity radius.

By Proposition 3.8, the three loops γA, γB and γC have length 2rp. Cutting

along the three loops we get four pieces; the three associated to the singular
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points give us the equations

cosα = cosh rp sin
α̃

2

cosβ = cosh rp sin
β̃

2

cos γ = cosh rp sin
γ̃

2
.

Vice versa, any positive solution to these equations determines the three

pieces.

The fourth piece is a triangle, equilateral since the three sides are the three

loops. Denote by θ the angle of the triangle. By hyperbolic trigonometry

we have

cosh 2rp =
cos θ + cos2 θ

sin2 θ
,

or equivalently

cosh rp =

√
1

2(1− cos θ)
.

A positive solution of the above equation determines the triangle. Note that

θ 6= 0, because otherwise two loops would have the same direction in p,

which is impossible.

Since p is not a singular point, the angles at it should sum up to 2π. Thus,

we obtain the following system:

(1)



cosα = cosh rp sin α̃
2

cosβ = cosh rp sin β̃
2

cos γ = cosh rp sin γ̃
2

cosh rp =
√

1
2(1−cos θ)

α̃+ β̃ + γ̃ + 3θ = 2π

We want a solution that satisfies rp > 0, α̃, β̃, γ̃ ∈ (0, π) and θ ∈ (0, π3 ). If

we have such a solution to the system, we have four pieces that can be glued

to form the surface S.

Under the conditions rp > 0, α̃, β̃ ∈ [0, π) and θ ∈ (0, π3 ), the system (1) is

equivalent to

(2)



sin α̃
2 = cosα

cosh rp

sin β̃
2 = cosβ

cosh rp

cos θ = 1− 1
2 cosh2 rp

γ̃ = 2π − α̃− β̃ − 3θ

Fα,β,γ(rp) = 0
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where

fα,β,γ(x) = 2 cos γ x4− (3x2− 1)(
√
x2 − cos2 α

√
x2 − cos2 β− cosα cosβ)

− (x2 − 1)
√

4x2 − 1(cosα
√
x2 − cos2 β + cosβ

√
x2 − cos2 α)

and Fα,β,γ = fα,β,γ ◦ cosh.

When the triple (α, β, γ) is fixed and it is clear to which angles we are refer-

ring to, we will simply call f (respectively F ) the function fα,β,γ (respectively

Fα,β,γ).

Remark 3.9. The special role of γ in the function fα,β,γ follows from the

choice to express γ̃ in terms of the other angles.

Suppose now that one angle, say α, is a right angle. Then we have only three

pieces obtained by cutting S along the three loops. We have the following

system:

(3)


cosβ = cosh rp sin β̃

2

cos γ = cosh rp sin γ̃
2

cosh rp =
√

1
2(1−cos θ)

β̃ + γ̃ + 3θ = 2π

Again, we want a solution that satisfies rp > 0, , β̃, γ̃ ∈ (0, π) and θ ∈ (0, π3 ).

Remark 3.10. If we ask rp > 0, the equation

cosα = cosh rp sin
α̃

2

has α̃ = 0 as solution if and only if α = π
2 .

From the previous remark it follows that we can consider the same system

(2) for any surface. We look for a solution rp > 0, α̃, β̃, γ̃ ∈ [0, π) and

θ ∈ (0, π3 ).

Proposition 3.11. There exists a unique solution to (2) satisfying rp > 0,

α̃, β̃, γ̃ ∈ [0, π) and θ ∈ (0, π3 ).

Proof. One can check that f(1) > 0 and limx→+∞ f(x) = −∞. Since

f is continuous, it has a zero in (1,+∞), i.e. F has a zero in (0,+∞).

To prove that the whole system has a solution, we have to find non-negative

angles satisfying the equations above. Given rp such that F (rp) = 0, there
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are unique α̃
2 ,

β̃
2 ∈ [0, π/2) that satisfy

sin
α̃

2
=

cosα

cosh rp

sin
β̃

2
=

cosβ

cosh rp
.

Since

cos θ = 1− 1

2 cosh2 rp
∈
(

1

2
, 1

)
,

there is a unique solution θ ∈
(
0, π3

)
. As

γ̃ = 2π − α̃− β̃ − 3θ ∈ (−π, 2π),

we get γ̃
2 ∈

(
−π

2 , π
)
. Using the equivalence with system (1), we know that

sin
γ̃

2
=

cos γ

cosh rp
∈ [0, 1),

thus γ̃/2 ∈ [0, π). So, for every zero of F , we have a unique solution

(rp, α̃, β̃, γ̃, θ) to (2) with the required conditions.

A solution gives us a radius and two associated centers, one for each triangle.

We know, by Proposition 3.8, that there exist exactly two maximum points

on S, which guarantees unicity of the solution of (2). �

From the proof above we also see that r(S) is the unique positive solution

of F = 0; for r ≥ 0

F (r) > 0⇔ r < r(S)

and

F (r) < 0⇔ r > r(S).

In terms of f , for x ≥ 1 we have

f(x) > 0⇔ x < cosh r(S)

and

f(x) < 0⇔ x > cosh r(S).

As last result of this section, we show that for triangular surfaces, the max-

imum injectivity radius depends continuously on the angles. To do so, con-

sider the function

F : A× R −→ R

(α, β, γ, y) 7−→ F(α, β, γ, y) := Fα,β,γ(y)

where A is the set of possible triples of angles:

A =

{
(α, β, γ) ∈

[
0,
π

2

]3
: α+ β + γ < π

}
.

Note that F is continuous, as one can see from the explicit form of Fα,β,γ(y).
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Remark 3.12. Given a triangular surface S and a point p ∈ S with maxi-

mum injectivity radius, we have

area
(
Dr(S)(p)

)
≤ area(S) < 2π.

So there is a constant M > 0 such that r(S) ≤M for all triangular surfaces.

Proposition 3.13. The map

r(S∗) : A → R

(α, β, γ) 7→ r(Sα,β,γ)

is continuous.

Proof. To prove the continuity, we show that for every sequence

{(αn, βn, γn)}+∞n=1 ⊆ A

converging to some triple (α, β, γ) ∈ A, the limit lim
n→+∞

r(Sαn,βn,γn) exists

and it is r(Sα,β,γ).

From Remark 3.12, we know that {r(Sαn,βn,γn)}+∞n=1 is contained in the com-

pact set [O,M ], so it has an accumulation point y. Then there exists a

subsequence

{r(Sαnk ,βnk ,γnk )}+∞k=1

converging to y. Since y ≥ 0 and r(Sα,β,γ) is the only positive zero of Fα,β,γ ,

we have

y = r(Sα,β,γ)⇔ F(α, β, γ, y) = Fα,β,γ(y) = 0.

We can compute F(α, β, γ, y):

F(α, β, γ, y) = F
(
α, β, γ, lim

k→+∞
r(Sαnk ,βnk ,γnk )

)
=

F
(

lim
k→+∞

(
αnk , βnk , γnk , r(Sαnk ,βnk ,γnk )

))
(?)
=

lim
k→+∞

F
(
αnk , βnk , γnk , r(Sαnk ,βnk ,γnk )

)
=

lim
k→+∞

Fαnk ,βnk ,γnk

(
r(Sαnk ,βnk ,γnk )

)
,

where (?) follows from the continuity of F . Now for every k

Fαnk ,βnk ,γnk

(
r(Sαnk ,βnk ,γnk )

)
= 0,

so the limit is zero too and y = r(Sα,β,γ).

Thus, every accumulation point of {r(Sαn,βn,γn)}+∞n=1 is r(Sα,β,γ), so the se-

quence converges and its limit is r(Sα,β,γ). �
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1.2. The minimum among triangular orbifolds. Up to now, we

have been working with admissible cone-surfaces of signature (0, 3), without

requiring the angles to be submultiples of 2π. In this section, we restrict

ourselves to the orbifold case. We call triangular orbifold an orbifold of

signature (0, 3); we want to find which one has smallest maximum injectivity

radius.

Notation: we will write (α, β, γ) ≤ (α′, β′, γ′) for α ≤ α′, β ≤ β′ and

γ ≤ γ′.

Lemma 3.14. If (α, β, γ) ≤ (α′, β′, γ′), then r(Sα,β,γ) ≥ r(Sα′,β′,γ′) with

equality if and only if (α, β, γ) = (α′, β′, γ′).

Proof. We pass from (α′, β′, γ′) to (α, β, γ) in the following way

(α′, β′, γ′)→ (α′, β′, γ)→ (α′, β, γ)→ (α, β, γ).

and show that in any passage the radius decreases. Consider the first step.

For all x ≥ 0:

Fα′,β′,γ′(x)− Fα′,β′,γ(x) = 2(cos γ′ − cos γ) cosh4 x ≥ 0

because γ′ ≤ γ. So Fα′,β′,γ′(x) ≥ Fα′,β′,γ(x). Since r(Sα′,β′,γ′) (resp.

r(Sα′,β′,γ)) is the only solution in (0,+∞) of Fα′,β′,γ′ (resp. Fα′,β′,γ), we

have

r(Sα′,β′,γ′) ≤ r(Sα′,β′,γ)

The same argument applied to all the steps shows that

r(S(α,β,γ)) ≥ r(S(α′,β′,γ′)).

�

Lemma 3.15. Given any triple of angles α, β, γ corresponding to a trian-

gular surface Sα,β,γ, (α, β, γ) is less or equal to (at least) one triple among

(π/2, π/3, π/7), (π/2, π/4, π/5) and (π/3, π/3, π/4).

Proof. Suppose α ≥ β ≥ γ. By definition, all the angles are between

π/2 and 0. Since α+β+γ < π, either α = π/2 and β, γ < π/2, or α < π/2.

If α = π/2, the condition α + β + γ < π implies that β ≤ π/3. If β = π/3,

then γ should be at most π/7, hence (α, β, γ) ≤ (π/2, π/3, π/7). If β < π/3,

i.e. β ≤ π/4, then either β = π/4 and γ ≤ π/5, or γ ≤ β ≤ π/5. In both

situations, (α, β, γ) ≤ (π/2, π/4, π/5).

If α < π/2, then α, β, γ ≤ π/3. Moreover, since α+ β + γ < π and γ is the

smallest angle, then γ ≤ π/4. So (α, β, γ) ≤ (π/3, π/3, π/4), and this ends

the proof. �
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From Lemmas 3.14 and 3.15, it follows that it suffices to compare Sπ
2
,π
3
,π
7
,

Sπ
2
,π
4
,π
5

and Sπ
3
,π
3
,π
4

to find the triangular orbifold with smallest maximum

injectivity radius.

To prove that Sπ
2
,π
3
,π
7

is minimal, we first compute its maximum injectivity

radius. We know that cosh r
(
Sπ

2
,π
3
,π
7

)
is the only solution (bigger than 1)

of

2x

(
cos

π

7
x3 − (2x2 − 1)

√
x2 − 1

4

)
= 0,

i.e. the only solution bigger than 1 of

cos
π

7
x3 = (2x2 − 1)

√
x2 − 1

4
.

Both sides of the previous equation are positive for x > 1, so an equivalent

equation is (
cos

π

7
x3
)2

=

(
(2x2 − 1)

√
x2 − 1

4

)2

.

We get a cubic equation in t = x2:(
4− cos2 π

7

)
t3 − 5t2 + 2t− 1

4
= 0.

This equation has only one real solution t0, so

r
(
Sπ

2
,π
3
,π
7

)
= arccosh

√
t0.

One can check that

Fπ
2
,π
4
,π
5

(
r
(
Sπ

2
,π
3
,π
7

))
< 0 and Fπ

3
,π
3
,π
4

(
r
(
Sπ

2
,π
3
,π
7

))
< 0,

so

r
(
Sπ

2
,π
4
,π
5

)
> r

(
Sπ

2
,π
3
,π
7

)
and r

(
Sπ

3
,π
3
,π
4
) > r(Sπ

2
,π
3
,π
7

)
.

We have proven the following:

Proposition 3.16. For every triangular orbifold S, r(S) ≥ r
(
Sπ

2
,π
3
,π
7

)
,

with equality if and only if S = Sπ
2
,π
3
,π
7

.

We define ρT to be r
(
Sπ

2
,π
3
,π
7

)
. Numerically

ρT ≈ 0.187728 . . .
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2. Orbifolds of signature (g, n) 6= (0, 3)

Even though we have only dealt with a small subset of the set of orbifolds, a

good part of the work for this chapter is already done. We have a candidate

minimal orbifold and we can even compute explicitly its maximum injectivity

radius. Now we just need to show that this candidate is indeed minimal.

To do this, it is enough to see that every other orbifold contains a disk of

radius bigger than ρT .

Essentially, the idea is to find in each non-triangular orbifold some simple

piece (a Y-piece or triangle) which is known to contain a disk of radius bigger

than ρT . This works for most orbifolds, except for a couple of special cases

which we have to treat separately.

2.1. Finding Y-pieces. We use the following well known result:

Proposition 3.17. Every open Y-piece contains two closed disks of radius

ρY = log 3
2 .

One can check that Fπ
2
,π
3
,π
7
(ρY ) < 0, hence ρY > ρT . As a consequence, if

we find an embedded open Y-piece in a surface S, we know that r(S) > ρT .

Proposition 3.18. Let S be an orbifold of signature (g, n). Then S contains

an embedded open Y-piece if and only if g > 0 and 3g + n ≥ 5 or g = 0 and

n ≥ 6.

Proof. [⇒] To have an embedded Y-piece, we need:

• if g > 0, at least two curves in a pants decomposition;

• if g = 0, at least three curves in a pants decomposition (since we

cannot embed a one-holed torus).

Via Proposition 2.12, the number of curves in a pants decomposition is

3g − 3 + n, so we get the stated conditions.

[⇐] Consider S \Σ as topological surface. We say that two pants decompo-

sitions P1 and P2 are joined by an elementary move (see [HT80]) if P2 can

be obtained from P1 by removing a single curve and replacing it by a curve

that intersects it minimally. Given a pants decomposition, we can construct

its dual graph G (see [Bus10]): vertices correspond to pairs of pants and

there is an edge between two vertices if the corresponding pairs of pants

share a boundary curve. In particular, there is a loop at a vertex if two

boundary curves of a pair of pants are glued to each other in the surface.

The number of edges of G is the number of curves in a pants decomposition,

i.e. 3g − 3 + n, and every vertex in G has degree at most 3. Suppose v ∈ G
is a vertex of degree 3 and consider the associated pair of pants P . Passing
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Figure 7. Two pants decompositions joined by an elemen-

tary move

to the geodesic representatives (via Theorem 2.11) of the boundary curves

of P , we get a Y-piece, whose interior is embedded in S.

So, let us consider a surface S satisfying g > 0 and 3g+ n ≥ 5 or g = 0 and

n ≥ 6, a pants decomposition on it and its dual graph.

If g ≥ 2, the graph has at least two circuits (that could be loops). The

circuits are connected to each other, since S is connected. So there is a

vertex v on one of the circuits connected to a vertex outside of the circuit.

Thus the degree of v is 3 and, as seen before, we get an embedded open

Y-piece.

If g = 1, either the graph is a circuit with 3g−3+n ≥ 2 edges or it contains

a circuit as a proper subgraph. In the first case, we can choose any edge

and perform an elementary move on it to obtain a vertex of degree 3. In

the second case, there is a vertex v on the circuit connected with a vertex

outside the circuit, hence deg(v) = 3. Given a vertex of degree 3 we have,

as before, a Y-piece.

Figure 8. An elementary move producing a vertex of degree

3, for g = 1

If g = 0, the graph is a tree. If there is no vertex of degree three, the graph

is a line with at least 3 edges. Again we can perform an elementary move

on an edge between two vertices of degree 2 and get a vertex of degree 3, so

a Y-piece in S. �

Corollary 3.19. Every surface S of genus g with n singular points such

that g > 0 and 3g + n ≥ 5 or g = 0 and n ≥ 6 satisfies r(S) > ρT .
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2.2. Finding triangles in spheres with four or five singular

points. Let T be a hyperbolic triangle and r(T ) the radius of its inscribed

disk. It turns out that if the area of T is at least π
4 , we have

Fπ
2
,π
3
,π
7

(
arctanh

(
1

2
sin

area(T )

2

))
< 0.

By Proposition 2.6, this implies that r(T ) > ρT .

Given a sphere S with n singular points, n = 4 or 5, we will look for an

embedded triangle of area at least π
4 . Let 2π

p1
, . . . 2π

pn
be the angles at the

singular points, where pi ≥ 2 is an integer or pi = ∞ (i.e. the point is a

cusp). Suppose p1 ≤ p2 ≤ · · · ≤ pn. The area of the surface is

area(S) = (n− 2)2π −
n∑
i=1

2π

pi
.

If we cut the surface into 2(n − 2) triangles (by cutting it first into two

n-gons and then cutting each polygon into n−2 triangles), the average area

of the triangles is

area(S)

2(n− 2)
= π

(
1− 1

n− 2

n∑
i=1

1

pi

)
.

This average is at least π
4 unless

(1) n = 5, p1 = p2 = p3 = p4 = 2 and p5 = 2 or 3, or

(2) n = 4, p1 = p2 = p3 = 2 and p4 <∞ or p1 = p2 = 2, p3 = 3 and p4 ≤ 5.

So, if we are not in case (1) or (2), S contains a triangle with area at least
π
4 , hence r(S) > ρT .

In case (1), cut the surface along geodesics as in the following picture:

Figure 9. A way to cut a 5-punctured sphere into triangles

We obtain four triangles (if we cut open along a geodesic starting from a

cone point of order two, we obtain an angle of π, so a side of a triangle).
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The average area of those triangles is

area(S)

4
=

6π −
5∑
i=1

2π

pi

4
≥ π

4
,

so there is a triangle of area at least π
4 , as desired.

In case (2), cut the surface along geodesics as in the following picture:

Figure 10. A way to cut a 4-punctured sphere into triangles

We have now two triangles and the average area is

area(S)

2
=

4π −
4∑
i=1

2π

pi

2
= π − π

p3
− π

p4
.

If p3 ≥ 3 or p4 ≥ 4, this average is at least π
4 and we have a disk of large

enough radius. The only case that is left is p1 = p2 = p3 = 2 and p4 = 3,

which we will consider separately.

2.3. Two special cases. First special case: let S be a sphere with

three cone points of order 2 and one of order 3. Let S̃π
2
,π
3
,π
7

be Sπ
2
,π
3
,π
7

cut

open along the side between the cone points of order 2 and 7. We want to

embed S̃π
2
,π
3
,π
7

into S.

We decompose S into two isometric quadrilaterals by cutting along four

geodesics between pairs of cone points. Each of the two quadrilaterals has

three right angles and one angle π
3 . Let λ, µ, l and m be the length of the

sides as in picture 11. Using hyperbolic trigonometry, one can express λ and

µ as functions of l and it is straightforward from the obtained expressions

to deduce that λ, µ > log 3
2 . Without loss of generality, assume λ ≥ µ. Since

tanhλ tanhµ =
1

2
,

we have

λ ≥ arctanh
1√
2
.
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Figure 11. A trirectangle obtained by cutting the sphere S

It is possible to check that

log 3

2
> c

arctanh
1√
2
> a

where a, b and c are the sides opposite to π
2 , π3 and π

7 in one of the triangles

forming Sπ
2
,π
3
,π
7
. So µ > c and λ > a and we can embed the triangle in

the quadrilateral by placing B on the cone point of order three, c on the

side of lenght µ and a on the side of length λ. By embedding in the same

Figure 12. The embedding of the triangle in the quadrilateral

way another copy of the triangle in the other quadrilateral, we obtain the

embedding of S̃π
2
,π
3
,π
7

in S.

Given a point on Sπ
2
,π
3
,π
7

that realizes the maximum injectivity radius, con-

sider the corresponding point p on S̃π
2
,π
3
,π
7
⊆ S. We know that DρT (p) ∩

S̃π
2
,π
3
,π
7

is embedded in S̃π
2
,π
3
,π
7
, hence in S. Note that the distance of p to

the order two points is bigger than d(p,m) or d(p, l). So it’s enough to prove

that the distances d(p, l) and d(p,m) are strictly bigger than ρT to deduce

that DρT (p) is embedded in S.
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Figure 13. The disk in the surface S

We have:

µ− c > log 3

2
− c

and Fπ
2
,π
3
,π
7

(
log 3

2 − c
)
< 0, hence µ− c > log 3

2 − c > ρT . Similarly

λ− a ≥ arctanh
1√
2
− a

and

Fπ
2
,π
3
,π
7

(
arctanh

1√
2)
− a

)
< 0,

so

λ− a ≥ arctanh
1√
2
− a > ρT .

Since d(p, l) > µ − c > ρT and d(p,m) > λ − a > ρT , DρT (p) is embedded

in S.

This shows that r(S) ≥ ρT . Actually, since d(p, l) and d(p,m) are strictly

bigger than ρT , we can choose a point p′ in a small neighborhood of p such

that 
d(p′, l) > ρT
d(p′,m) > ρT
d(p′, B) > d(p,B),

where B is the cone point of order 3. Since we are increasing the distance

from B, with the same argument used for triangular surfaces we get that

rp′ > rp = ρT . So r(S) > ρT .

Second special case: tori with exactly one singular point. We will use the

following result [Par06]:

Proposition 3.20. Let P be a right-angled pentagon and P̊ its interior.

Then P̊ contains a close disk of radius ρP =
1

2
log

9 + 4
√

2

7
.
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Note that ρP > ρT , as Fπ
2
,π
3
,π
7
(ρP ) < 0. So again, the idea is to find a

right-angled pentagon in any torus T with a singular point, to deduce that

r(T) > ρT . We proceed as follows.

First of all, we choose a simple closed geodesic on T and we cut open along

it; we obtain a V-piece. Following [Dia00], this can be divided into two

isometric pentagons with four right angles and an angle π
n or 0.

Lemma 3.21. Let P be a pentagon with four right angles and an angle α ∈
[0, π2 ]. Then P contains a right-angled pentagon.

Proof. If α = π
2 , the result is trivial. Let us suppose that α < π

2 .

Label the sides of the pentagon as in figure 14 and consider h, the common

Figure 14. The pentagon P with the embedded right-

angled pentagon

orthogonal of l1 and l4. The pentagon bounded by l1, l2, l3, l4 and h is a

right-angled pentagon contained in P . �

With this result we can get the following.

Lemma 3.22. Let T be a torus with a singular point. Then r(T) > ρT .

Proof. As we described before, we can find in T a pentagon with four

right angles and an angle α ∈ [0, π2 ]. Via Lemma 3.21 this pentagon contains

a right-angled pentagon, which contains a disk of radius

ρP > ρT

by Proposition 3.20. So

r(T) ≥ ρP > ρT .

�
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3. Main results

We are now ready to state the main results of this chapter. The first one

is a sharp lower bound for the maximum injectivity radius of 2-dimensional

hyperbolic orbifolds.

Theorem 3.23. There exists a universal constant ρT such that every orbifold

S satisfies

r(S) ≥ ρT
and the equality is attained if and only if S is a sphere with three cone points

of orders 2, 3 and 7.

Proof. If S has signature (0, 3), the result holds by Proposition 3.16.

If (g, n) 6= (0, 3), we know that r(S) > ρT by Corollary 3.19 and sections 2.2

and 2.3. �

Theorem 3.23 has a consequence about the action of the group of isometries

of a surface on the surface itself, as we explain now.

Consider a hyperbolic surface S and its automorphism group Aut+(S). Take

a point p ∈ S which is not fixed by any automorphism of S; then there

exists r > 0 such that the disks Dr(ϕ(p)), where ϕ varies in Aut+(S), are

all embedded and pairwise disjoint, i.e. all images of p are at distance at

least 2r from p. The question is: can we choose a radius which doesn’t

depend on the surface, provided we choose carefully the point p? And what

is the maximum radius we can choose? Using Theorem 3.23, we can answer

both questions.

Denote by ρ(S) the maximum radius r for which there exists a point p such

that {Dr(ϕ(p))}
ϕ∈Aut+(S)

are embedded and pairwise disjoint. Recall that

a Hurwitz surface is a closed hyperbolic surface S such that

|Aut+(S)| = 84(g − 1),

where g is the genus of S. Note that this means that the automorphism

group is as large as possible, according to Hurwitz Theorem.

Theorem 3.24. For every hyperbolic surface S, we have ρ(S) ≥ ρT , with

equality if and only if S is a Hurwitz surface.

Proof. Given a surface S, we consider the quotient S
/

Aut+(S) and

the canonical projection π : S → S
/

Aut+(S) . Note that for every p ∈ S,

the disks {Dρ(ϕ(p))}
ϕ∈Aut+(S)

are embedded and pairwise disjoint if and

only if ρ is at most the injectivity radius of π(p). To maximize the radius

ρ, we choose q ∈ S
/

Aut+(S) which has maximum injectivity radius and
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p ∈ π−1(q). Moreover, S is a Hurwitz surface if and only if its quotient

S
/

Aut+(S) is Sπ
2
,π
3
,π
7
. Then the result follows from Theorem 3.23. �



CHAPTER 4

Maximum injectivity radius of surfaces

In this chapter we will discuss the problem of bounding the maximum in-

jectivity radius of hyperbolic surfaces. We will describe some known results

and we will give a new proof of one of them.

1. Known results

The maximum injectivity radius of hyperbolic surfaces has been studied for

a long time. One of the first results dates back to 1982, when Yamada proves

in [Yam82] a sharp lower bound for all orientable hyperbolic surfaces.

Theorem 4.1. For any hyperbolic surface S, we have

r(S) ≥ ρS := arcsinh
2√
3

with equality if an only if S is a thrice-punctured sphere.

From this, it is easy to deduce that ρS is an infimum in each moduli space:

Corollary 4.2. For every (g, n) such that 2− 2g − n < 0, we have

inf
S∈Mg,n

r(S) = ρS .

The infimum is not attained, unless the signature is (0, 3).

Proof. For (g, n) = (0, 3), it is obvious from Theorem 4.1. Suppose

(g, n) 6= (0, 3); the idea is to pinch a pants decomposition on a surface to

approach a union of thrice-punctured spheres. More precisely: by Theorem

4.1 we already know that infS∈Mg,n r(S) ≥ ρS . So it is enough to construct

a sequence of surfaces inMg,n with maximum injectivity radius converging

to ρY . Fix any S ∈Mg,n and a pants decomposition P = {γ1, . . . , γ3g−3+n}.
Construct a sequence of surfaces Sn ∈Mg,n such that

`Sn(γi) =
1

n
`S(γi)

and the twist parameters are the same as for S (see [Bus10] for the definition

of twist parameters). For n going to infinity, Sn converges to a maximally

noded surface at the boundary of moduli space. For n big enough, all

curves in the pants decompositions are very short, so a maximal disk doesn’t

43
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intersect P, i.e. it is contained in a Y-piece with short boundary curves.

Computations as in section 2 show that for the lengths of the boundary

curves going to zero, the radius of a maximal disk embedded in a Y-piece

tends to ρS . Thus r(Sn) converges to ρS . �

Note that the situation is different for orbifolds, meaning that not for all

signatures

inf
S∈Og,n

r(S) = ρT .

For instance, if n = 0, Og,0 =Mg,0, so the infimum is ρS by Theorem 4.1.

In general, it is not known which is the infimum per signature and whether

it is attained or not.

If we consider surfaces with boundary, we still have a lower bound on the

maximum injectivity radius, which follows from a more general result of

Parlier [Par06].

Theorem 4.3. Let S be a closed hyperbolic surface of genus g and let γ be

a simple closed geodesic on S. Then S \ γ contains 4g − 4 closed disks of

radius ρY := log 3
2 . Conversely, if ρ > ρY is a given constant, there exists a

simple closed geodesic γρ on S such that S \ γρ does not contain any open

disk of radius ρ.

In terms of maximum injectivity radius, this implies that for every hyper-

bolic surface S with boundary, r(S) ≥ ρY .

If we are interested in upper bounds, the first result has been obtained

in the case of closed (orientable and non-orientable) surfaces by Bavard in

[Bav96], where he shows the following:

Theorem 4.4. (a) Let S be a closed orientable hyperbolic surface of genus

g. Then

cosh r(S) ≤ 1

2 sin π
12g−6

and for every genus g there exists an orientable surface of genus g real-

izing the equality.

(b) Let S be a closed non-orientable hyperbolic surface of Euler characteris-

tic χ. Then

cosh r(S) ≤ 1

2 sin π
6−6χ

and for every Euler characteristic χ there exists a non-orientable surface

of Euler characteristic χ realizing the equality.

More generally, there is an upper bound for all signatures, which has been

proven by DeBlois in [DeB15].



2. A NEW PROOF OF YAMADA’S THEOREM 45

Theorem 4.5. For r > 0, let

α(r) = 2 arcsin
1

2 cosh r

β(r) = arcsin
1

cosh r
.

A hyperbolic surface S of signature (g, n) has maximum injectivity radius at

most rg,n, where rg,n > 0 satisfies

3(4g + n− 2)α(rg,n) + 2nβ(rg,n) = 2π.

Moreover, for every (g, n) with 2g − 2 + n < 0

0 6= |{S ∈Mg,n | r(S) = rg,n}| <∞.

In particular, this means that

sup
S∈Mg,n

r(S) = max
S∈Mg,n

r(S) = rg,n.

Note that the upper bound depends on the signature, while the lower bound

of Theorem 4.1 doesn’t.

2. A new proof of Yamada’s Theorem

In this section we want to show how the techniques developed for proving

Theorem 3.23 (in particular for the results of section 1) can be used to

obtain Yamada’s lower bound (Theorem 4.1). We get a new short proof,

with simple geometric interpretation.

Note that recently Gendulphe [Gen14] has given another proof of Theorem

4.1.

Proof of Theorem 4.1. Consider a hyperbolic surface S and fix a

point p with maximum injectivity radius. Then the disk Drp(S) determines

at least two loops based at p, geodesics except at p, of length twice the

injectivity radius. As for triangular surfaces, a careful analysis of these

loops will give us the desired result.

Suppose there are exactly two such loops and assume that

• either at least one loop is homotopic to a cups, or

• the geodesic representatives α and β do not intersect.

Then we are in the situation of Figure 1, where α, β or γ can be cusps:
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Figure 1. The point p with the two loops

Fix a point q in an ε-neighborhood of p which belongs to the orthogonal from

p to γ, if γ is a simple closed geodesic, or to the geodesic from p to γ, if γ is

a cusp. By choosing ε small enough, the loops based at q and surrounding

α and β will be longer than the loops based at p, and by continuity all other

loops based at q will still be longer than 2rp. So rq > rp, a contradiction.

As a consequence, we have two possibilities:

(a) there are at least three loops of length 2rp such that either two are ho-

motopic two cusps or the three geodesic representatives do not intersect;

(b) there are two loops of length 2rp with geodesic representatives which

intersect once.

Note that case (b) cannot happen if the surface is a thrice-punctured sphere.

Case (a)

Consider three loops of length 2rp; they determine a 3- or a 4-holed sphere.

Suppose first that there are three loops which determine a 3-holed sphere.

Then, as for triangular surfaces, we can write equations for p. Denote by α,

β and γ the three boundary curves or cusps, by α̃, β̃ and γ̃ the angles of the

three loops at p and by θ the angle of the (equilateral) triangle whose sides

are the three loops (see Figure 2). We have:

Figure 2. Three loops determining a Y-piece
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(4)



cosh `(α)
2 = cosh rp sin α̃

2

cosh `(β)
2 = cosh rp sin β̃

2

cosh `(γ)
2 = cosh rp sin γ̃

2

cos θ = 1− 1
2 cosh2 rp

α̃+ β̃ + γ̃ + 3θ = 2π

If by contradiction rp < ρS , we get

α̃, β̃, γ̃ > 2 arcsin

√
3

7

and

θ > arccos
11

14
,

so

α̃+ β̃ + γ̃ + 3θ > 2π

which is a contradiction. Moreover, rp = ρS is a solution if and only if

`(α) = `(β) = `(γ) = 0, i.e. if we are on a thrice-punctured sphere. So in

this case, r(S) ≥ ρS , with equality if and only if S is a thrice-punctured

sphere.

If no three loops determine a 3-holed sphere, we choose any three loops

and we denote by α, β and γ the corresponding geodesic representatives

or cusps. Consider the associated 4-holed sphere and let δ be the fourth

boundary curve or cusps. The loop based at p and homotopic to δ has

length at least 2rp. We can write down equations satisfied by the pieces we

obtain by cutting the four-holed sphere along the loops. If we assume by

contradiction that rp ≤ ρS , we get (similarly to before)

α̃, β̃, γ̃ ≥ 2 arcsin

√
3

7
.

Consider the quadrilateral with the four loops as sides; three sides have the

same length 2rp and the fourth has length at least 2rp. The two diagonals

of the quadrilateral are longer than 2rp, otherwise we have three loops of

length 2rp determining a 3-holed sphere. Let us denote the angles as in

Figure 3.
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Figure 3. The quadrilateral with the four loops as sides

By hyperbolic trigonometry we get

ϕ1, ϕ2 > 2 arcsin

√
3

2
√

7

and

ϕ3, ϕ4 > arcsin

√
3

2
√

7
.

So

α̃+ b̃+ γ̃ + δ̃ + 2θ + 2ϕ > 2π,

a contradiction. Thus r(S) > ρS .

Case (b)

Assume again by contradiction that rp ≤ ρS . Consider the one-holed torus

determined by the geodesic representatives α and β of the two loops of

length 2rp. Denote its boundary curve or cusp by γ. Since α, β ≤ 2ρS , by

the collar lemma (Theorem 2.9) we have α, β ≥ 2 arcsinh
√

3
2 .

Cut the one-holed torus along α and let d be the shortest path between the

two copies of α. Again by Theorem 2.9, we obtain that

2 arcsinh

√
3

2
≤ `(d) ≤ `(β) ≤ 2ρS .

If γ is not a cusp, then

cosh
`(γ)

2
= sinh2 `(α)

2
cosh `(d)− cosh2 `(α)

2
=

= sinh2 `(α)

2
(cosh `(d)− 1) + 1.

So 17
8 ≤ cosh `(γ) ≤ 41

9 and the width w(γ) of the collar around γ satisfies

w(γ) > log
5

4
> log

2√
3
.

Remark 4.6. By hyperbolic trigonometry (Proposition 2.4), if a point p has

distance at least log 2√
3

from the collar around a curve α of length less than

2ρS, then the loop based at p and homotopic to α is at least 2ρS.
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(i) If `(γ) > 2ρS , fix q ∈ γ. Consider a loop based at q of length 2rq and

its geodesic representative δ. There are three possibilities:

• if δ ∩ γ = ∅, by Remark 4.6 we get 2rq = `(δ) > 2ρS ;

• if δ ∩ γ 6= ∅ and δ 6= γ, then δ crosses the one-holed torus, so it

crosses α or β at least once and γ at least twice. Thus

2rq = `(δ) ≥ 2 arcsinh

√
3

2
+ 4 log

5

4
> 2ρS ;

• if δ = γ, then rq > ρS .

In all cases, rq > ρS > rp, a contradiction.

(ii) If `(γ) ≤ 2ρS , one can show that there exists a solution to the system

(4), determining a point q with loops of length

` > 2 arccosh

√
37

3
> 2ρS .

Moreover

cosh d(q, α) =
sinh `

2

sinh `(α)
2)

> ρS .

So there exists r > ρS such that all loops based at q have length at

least 2r, thus again r(S) > rp, a contradiction.

We are left with the case where γ is a cusp. In this situation, cut the

one-holed torus along α and consider a point q which is

• equidistant from the two copies of α, and

• at distance log 2√
3

+ ε from Hγ (where ε > 0 is small).

By explicit computations, rq > ρS > rp, which is again a contradiction.

So we have seen that in case (a), r(S) ≥ ρS with equality if and only if S is

a thrice-punctured sphere. In case (b), S is not a thrice-punctured sphere

and we always have r(S) > ρS . �





CHAPTER 5

Lengths of systoles

An very important object in the study of hyperbolic surfaces is the systole,

i.e. a shortest essential closed curve. In this chapter and in the next one,

we are going to study two main problems about the systole: bounds on its

length and bounds on the number of systoles.

The first basic property of systoles is that, in most cases, they are simple

closed geodesics.

Proposition 5.1. Let S be a hyperbolic surface of signature (g, n) 6= (0, 3)

and γ a systole. Then γ is simple.

Proof. By [Bus10, Theorem 4.2.4], if γ is not simple, then it is a figure-

eight geodesic (i.e. a closed geodesic with exactly one self-intersection). Con-

sider the three curves obtained as boundary of a small tubular neighborhood

of γ. They cannot be contractible, otherwise we could shorten γ, and at least

one of the three must be essential, otherwise S is a thrice-punctured sphere.

Take the geodesic representative of this essential curve; it is shorter than γ,

a contradiction. �

The only special case is the one of the thrice-punctured sphere, on which

systoles are figure-eight geodesics of length 4 arcsinh 1. This follows from

the fact that the thrice-punctured sphere does not contain any simple closed

geodesic, from the fact that a shortest non-simple closed geodesic is a figure-

eight geodesic ([Bus10, Theorem 4.2.4]) and from a result by Yamada

[Yam82]:

Proposition 5.2. If a closed geodesic γ on a hyperbolic surface has self-

intersection, then

`(γ) ≥ 4 arcsinh 1

with equality if and only if S is the thrice-punctured sphere and γ is a figure-

eight geodesic.

Note: to avoid this special case, from now on we will consider only surfaces

surfaces of signature different from (0, 3).

In the next two sections we will present some known results on the systole

length and a new upper bound.

51
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1. Known results

We denote by sys(S) the length of a systole of S. Note that it is easy

to construct surfaces with arbitrarily short systoles in each moduli space.

Indeed, we can set the lengths of all curves in a pants decomposition equal

to ε. By the collar lemma, we are sure that these curves are actually the

systoles for any chosen ε < 2 arcsinh 1.

A much more challenging (and still open) problem is to find a sharp upper

bound in terms of the signature. For closed surfaces, it is relatively easy to

find an upper bound of order 2 log g (see [Bus10, Lemma 5.2.1]).

Lemma 5.3. For any closed hyperbolic surface S of genus g, the systole

length satisfies sys(S) ≤ 2 log(4g − 2).

Proof. Set ` = sys(S). Any open disk of radius `/2 is embedded, thus

area(D`/2(p)) = 2π

(
cosh

`

2
− 1

)
≤ area(S) = 4π(g − 1),

which gives the desired bound. �

Even though this is a simple idea, this is essentially the best result that has

been achieved so far for closed surfaces.

For surfaces with cusps, Schmutz Schaller ([Sch94]) has obtained the fol-

lowing upper bound:

Theorem 5.4. For S ∈Mg,n, with n ≥ 2, we have

sys(S) ≤ 4 arccosh
6g − 6 + 3n

n
.

To get an idea of the growth of this bound, remember that for x→ +∞

arccoshx ∼ log x,

so for n fixed and g growing,

4 arccosh
6g − 6 + 3n

n
∼ 4 log g.

On the other hand, if g is fixed and n is growing, then the systole is bounded

by a constant.

It is not easy to construct examples of surfaces with large systole. The first

examples have been obtained by Buser and Sarnak in [BS94], where they

show that there exist families of closed surfaces {Sk}k of genus gk, with

gk →∞ as k →∞ such that

sys(Sk) ≥
4

3
log gk.
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There have been other constructions after Buser and Sarnak’s one (see for

instance Katz, Schaps and Vishne’s paper [KSV07]), but the gap between

2 log g and 4
3 log g remains.

2. A new upper bound

The goal of this section is to prove that every surface of genus at least one

has systole length bounded above by a function which only depends on the

genus.

For any cusp c and any non-negative r, we denote by Hc the horoball of

area two corresponding to c and we define the set Dr(c) to be

Dr(c) := {p ∈ S | d(p,Hc) < r} ∪ Hc.

If Dr(c) is homeomorphic to a once-punctured disk, we can compute its area,

which is

area(Dr(c)) = 2er.

Lemma 5.5.

(a) If there are two cusps c and c′ such that Dr(c) and Dr(c
′) are tangent,

then the simple closed geodesic forming a pair of pants with them has length

4 arccosh er, so

sys(S) ≤ 4 arccosh er.

(b) If Dr(c) is tangent to itself for some r ≥ log 2, then

sys(S) ≤ 2 arccosh(er − 1).

Proof. (a) Consider the pair of pants determined by the two cusps and

the simple closed geodesic γ surrounding them. Cut it along the orthogonal

from γ to itself, the shortest geodesic between the cusps and the perpendic-

ulars from the cusps to γ. Consider one of the four obtained trirectangles;

we denote its vertices by q, s, t and c and the intersection point of ∂Hc with

a side by p, as in Figure 2.

Figure 1. One of the trirectangles
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Draw the quadrilateral in the upper half plane, choosing infinity as ideal

point. We fix the two geodesics containing qc and tc to be x = 0 and x = 1.

The area of Hc intersected with the quadrilateral is 1, so ∂Hc is given by

y = 1 and p = i. Moreover, d(p, q) = 1
2d(Hc,H′c) = r, so q = ie−r. Consider

C1 and C2, the Euclidean circles representing the geodesics through p and s

and through s and t.

Figure 2. In the upper half plane

Since C1 ⊥ {x = 0}, C2 ⊥ {x = 1} and C1 ⊥ C2, they have equations

C1 : x2 + y2 = R2

and

C2 : (x− 1)2 + y2 = 1−R2

for some R. As q ∈ C1, we have R = er. By imposing d(t, s) = `/4, we

obtain ` = 4 arccosh er.

(b) The cusp c with the curve of length 2r from Hc and back determines a

pair of pants with at least one simple closed geodesic as boundary.

If the pair of pants has two cusps and a boundary curve α, we can cut it

along the geodesic between the two cusps, the shortest geodesics between

the cusps and α and the geodesic containing curve of length 2r. We get two

right-angled triangles with two ideal vertices and π
2 and two quadrilaterals

with three right angles and an ideal vertex, as in Figure 3.
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Figure 3. The cut pair of pants with two cusps

By direct computation similar to before, we obtain

`(α) = 2 arccosh(er − 1).

If the pair of pants has two boundary curves we denote them α and β, and

we suppose that `(α) ≤ `(β). We cut along the orthogonal from α to β, the

shortest geodesics from α and β to the horoball and the geodesic containing

the curve of length 2r. We obtain four quadrilaterals, with three right angles

and an ideal vertex, two by two isometric.

Figure 4. The cut pair of pants with one cusp

Again by direct computation we have

`(α) = 2 arccosh(aer)

and

`(β) = 2 arccosh((1− a)er)

where a is the area of Hc intersected with one of the two quadrilaterals

containing a part of α. Since `(α) ≤ `(β), we have a ≤ 1
2 . Moreover, α is

longest when a is maximum, that is when a = 1
2 . In this case

`(α) = `(β) = 2 arccosh

(
er

2

)
.

Since by assumption r ≥ log 2, we get that in both cases the curve α satisfies

the `(α) ≤ 2 arccosh(er − 1). �
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Remark 5.6. From the proof of the lemma we also have that if Dr(c) is

tangent to itself for some r ≤ log 2, then sys(S) ≤ 2 arcsinh 1.

We can now prove our bound on systole length for surfaces of genus g ≥ 1.

Theorem 5.7. There exists a universal constant K < 8 such that every

S ∈Mg,n satisfies

sys(S) ≤ 2 log g +K.

Proof. Set ` = sys(S).

For n = 0, Lemma 5.3 implies

` ≤ 2 log g + 2 log 4.

Suppose now that n ≥ 1. We split the proof into three non-mutually exclu-

sive cases. The first situation we consider is when there are “many” cusps

(how many will be made explicit): in this case two Dc(r)’s have to meet for

a “small” r and will determine a short curve. In the second case, we assume

that there are two cusps which are close to each other and the systole length

will be bounded by the length of the curve surrounding them. In the final

situation there are “few” cusps and we further assume any two are far away:

in this case we show that there is a cusp with a short loop from its horoball

to itself which in turn determines a short curve.

Case 1: n ≥
√

2πg

If the sets Dr(c) are pairwise disjoint for different cusps c and each homeo-

morphic to a once-punctured disk, then

area

( ⋃
c cusp

Dr(c)

)
= 2ner ≤ area(S) = 2π(2g + n− 2)

thus

er ≤ π(2g − 2 + n)

n
.

Since n ≥
√

2πg, this implies

er ≤
√

2π(g − 1)
√
g

+ π.

So for some r ≤ log
(√

2π(g−1)√
g + π

)
either two Dr(c) are tangent to each

other or one is tangent to itself. Lemma 5.5 now implies

` ≤ 4 arccosh

(√
2π(g − 1)
√
g

+ π

)
.

Case 2: there are two distinct cusps c1 and c2 with d(Hc1 ,Hc2) ≤ log(2π(g−
1 +
√

2πg))
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By Lemma 5.5

` ≤ 4 arccosh

√
2π(g − 1 +

√
2πg)

and we are done.

Case 3: 0 < n <
√

2πg and for any two cusps c1, c2 satisfy

d(Hc1 ,Hc2) > log(2π(g − 1 +
√

2πg))

We fix a cusp c. Since any two cusps are far away, for r ≤ log(2π(g − 1 +√
2πg)) the setDr(c) is disjoint from any other Hc′ . If it is also an embedded

once-punctured disk, then

area(Dr(c)) = 2er ≤ area(S) < 4π(g − 1 +
√

2πg)

and so

er ≤ log(2π(g − 1 +
√

2πg)).

We deduce that for some r ≤ log(2π(g − 1 +
√

2πg)), Dr(c) is tangent to

itself. By Remark 5.6, if r ≤ log 2 then ` ≤ 2 arcsinh 1. Otherwise, by

Lemma 5.5, we obtain

` ≤ 2 arccosh(2π(g − 1 +
√

2πg))− 1).

Now any surface with n > 0 will be in one of the three cases detailed above

and as such we can deduce:

` ≤ max

{
4 arccosh

(√
2π(g − 1)/

√
g + π

)
, 4 arccosh

√
2π(g − 1 +

√
2πg),

2 arccosh(2π(g − 1 +
√

2πg))− 1)
}
< 2 log g + 8.

�

Applying the techniques of the above theorem to punctured spheres, one can

show that the systole length of punctured sphere is bounded by a uniform

constant (which doesn’t depend on the number of cusps). This is also a

consequence of Theorem 5.4.

Note also that for n ∼ gα, Schmutz Schaller’s bound grows roughly like

4(1−α) log g. So our bound is stronger for α < 1
2 , while Schmutz Schaller’s

is better for α ≥ 1
2 .





CHAPTER 6

Kissing numbers

In the previous chapter we have addressed one of the first questions about

systoles, i.e. how long they can be. In this chapter we consider another very

natural question: how many systoles can a hyperbolic surface have?

The first to study the amount of systoles of surfaces was Schmutz Schaller, in

analogy with classical lattice sphere packing problem in Rn. In its simplest

form, in R2, the problem is to bound the number of disjoint open disks of

the same radius which are tangent to a given one (again of the same radius),

such that all centers lie on some lattice Λ. The number of tangent disks is

called the kissing number of the sphere packing (or of the lattice Λ). It

is relatively easy to show that in this case the optimal bound is 6, which

corresponds to disks with centers on the hexagonal lattice (i.e. the lattice

generated by the vectors (1, 0) and
(

1
2 ,
√

3
2

)
).

Figure 1. The hexagonal lattice in R2 and the correspond-

ing quotient torus with three equal systoles

Note that each pair of tangent disks corresponds to a shortest non-zero

vector of Λ. At the same time, each shortest vector also determines a shortest

non-contractible curve on the quotient torus R2
/

Λ, i.e. a systole of the

torus. As opposite vectors determine the same curve, we have that the

kissing number of Λ is twice the number of homotopy classes of systoles of

the associated flat torus. In particular, we know that a flat torus has at

most three systoles, up to homotopy.

A possible generalization of this problem is to consider higher genus surfaces

instead of tori. If we still require a constant curvature metric, we are bound

to consider hyperbolic surfaces. As on hyperbolic surfaces there is at most

59
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one systole per homotopy class, the problem becomes counting the number

of systoles on a hyperbolic surface.

Given a hyperbolic surface S, we denote by S(S) the set of systoles of S.

We define the kissing number Kiss(S) to be the number of systoles, i.e. the

cardinality of S(S).

As a first remark, note that surfaces with more than one systole (that is,

with kissing number bigger than one) are rare. Indeed, McShane and Parlier

proved in [MP08] that surfaces with two simple closed geodesics of the same

length are a very small set in Teichmüller space: the set of surfaces with

simple length spectrum is dense in Teichmüller space, and its complement

is Baire meagre (i.e. a union of countably many nowhere dense sets).

On the other hand, it is easy to find surfaces with kissing number which

grows linearly with g and n. In fact, take any surface of signature (g, n)

where all curves of a pants decomposition are of some length ε < 2 arcsinh 1

has kissing number 3g − 3 + n: its systoles are precisely the curves in the

pants decomposition (as at the beginning of section 1 of chapter 5).

Any linear lower bound on the kissing number is actually far from being

optimal. Indeed, in [SS97], Schmutz Schaller proved that for every ε > 0

there is a family of closed surfaces Sk of genus gk, with gk →∞ for k →∞,

such that

Kiss(Sk) ≥ g
4
3
−ε

k .

Similar lower bounds can also be obtained for surfaces with cusps, by consid-

ering principal congruence subgroups of PSL(2,Z) (see [Sch94]). In these

examples, the number of cusps grows roughly like g
2
3 .

As for the length of the systole, there is a gap between the known lower and

upper bounds. For closed surfaces, the best upper bound has been obtained

by Parlier in [Par13]:

Theorem 6.1. There is a constant C > 0 such that any closed hyperbolic

surface S of genus g has at most C g2

log g systoles.

This is actually a consequence of the upper bound on the systole of Propo-

sition 5.3 and the following result in the same paper of Parlier.

Theorem 6.2. There is a constant U > 0 such that for any closed hyperbolic

surface S of systole length sys(S) = ` the following holds:

Kiss(S) ≤ U e
`/2

`
g.

As a consequence of Theorem 6.2, surfaces with “many” (∼ g1+α, α > 0)

systoles must have “long” (∼ log g) systoles. Moreover, in [Sch94] and
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[Sch96], Schmutz Schaller proved that surfaces with maximal systole length

have many systoles (that is, at least 6g − 5 + 2n). Furthermore, all known

constructions of surfaces with long systoles or with large kissing number

come from arithmetic constructions. All of this suggests a strong connection

between the kissing number problem and the systole length problem.

Remark 6.3. It is well known that systoles on a closed surface pairwise

intersect at most once. So the kissing number problem is related to counting

how many pairwise non-homotopic simple closed curves there can be on a

(closed) surface, such that they pairwise intersect at most once.

This problem, attributed to Farb and Leininger (see [MRT14]), seems sur-

prisingly difficult to solve. The best known upper bound is cubic in the genus

and is proven by Przytycki in [Prz15]:

Theorem 6.4. The cardinality of a set C of essential simple closed curves

on a surface S that are pairwise disjoint and intersecting at most once is at

most

g(4|χ(S)|(|χ(S)|+ 1) + 1) + |χ(S)| − 1.

On the other hand, Malestein, Rivin and Theran in [MRT14] have con-

structed examples of such sets with size quadratic in the Euler characteristic.

This result, together with the sub-quadratic bound in Theorem 6.1, shows that

the purely topological problem is actually different then the kissing number

one.

Note that before this, it was already known that the topological and the sys-

tolic conditions were quite different: in fact, Anderson, Parlier and Pettet

showed in [APP11] that there are configurations of homotopy classes of

curves that fail to be systoles for any hyperbolic metric on the surface.

The objective of the remainder of this chapter is to prove an upper bound

for the kissing numbers of all finite area surfaces. To do so, we start with a

section about some intersection properties of systoles in this setting.

1. Intersection properties of systoles

We already mentioned that systoles on closed surfaces pairwise intersect

at most once. On surfaces with cusps, this not necessarily the case. For

instance, on punctured spheres, it is not difficult to see that systoles can

intersect twice (the simplest case is a four times punctured sphere with at

least two systoles – they necessarily intersect and the minimal intersection

number between two distinct curves is 2). This phenomenon also occurs for

surfaces with positive genus. An example of this can be derived from Buser’s
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hairy torus (cf. [Bus10, Chapter 5]) with cusps instead of boundary curves

and explicit examples in all genera are given in the sequel.

On the other hand, since systole length is bounded within each moduli space,

it follows from the collar lemma that the intersection number between any

two systoles is also bounded. This can be considerably sharpened: the first

main result of the this section will be that two systoles on punctured surfaces

can intersect at most twice.

Let α and β be simple closed geodesics on a surface S with i(α, β) ≥ 2 and fix

orientations on them. The curve α divides β into arcs between consecutive

intersection points. We say such an arc is of type I if the orientations at the

two intersection points are different and of type II if the orientations are the

same.

Figure 2. The two kinds of arcs

Note that the orientation at each intersection point depends on the choice

of orientations of α and β, but being of type I or II is independent on the

choice of orientations.

Lemma 6.5. If α and β are systoles of a surface S ∈Mg,n with i(α, β) ≥ 2,

all arcs between consecutive intersection points are of type I.

Proof. By contradiction, suppose that β contains arcs of type II. If

there are at least two of them, there exists one, say β1, of length at most
1
2 sys(S). Since β1 divides α into two arcs, one of the two is of length at

most 1
2 sys(S). Call this arc α1 and consider the curve α1 ∪ β1.

If α1 ∪ β1 were essential, its geodesic representative would be shorter than

sys(S), which is impossible. Thus α1 ∪ β1 must be non-essential. However

one can construct a curve γ homotopic to α1 ∪ β1 such that |γ ∩ α| = 1, so

via the bigon criterion γ and α intersect minimally. Thus

i(γ, α) = 1

and as such γ is non-trivial in homology and is therefore essential, a contra-

diction.
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Figure 3. The arcs α1 and β1 with the curve γ

If there is exactly one arc β1 of type II, there should be at least two (con-

secutive) arcs β2 and β3 of type I. Then if `(β1) ≤ 1
2 sys(S), we can argue as

before to obtain a contradiction. If not, then `(β2∪β3) ≤ 1
2 sys(S). The arcs

β2, β3 and α determine an embedded four-holed sphere with a non-trivial

curve of length at most 1
2 sys(S). By construction, the geodesic in the isotopy

class of this curve is strictly shorter than the systole, a contradiction. �

Proposition 6.6. If α and β are systoles of S ∈Mg,n, then i(α, β) ≤ 2.

Proof. Suppose by contradiction that i(α, β) > 2. By Lemma 6.5,

all arcs between consecutive intersection points are of type I, so i(α, β) is

even. Thus there are at least four intersection points and at least four arcs

of β between consecutive intersection points. This implies that there is an

intersection point and two arcs β1 and β2 departing from it with `(β1∪β2) ≤
1
2 sys(S). We argue as in the proof of Lemma 6.5: β1, β2 and α determine

an embedded four-holed sphere with a non-trivial curve of length at most
1
2 sys(S). By construction, the geodesic in the isotopy class of this curve is

strictly shorter than the systole, a contradiction. �

We can also prove that if two systoles intersect twice, there is a topological

constraint on their configuration.

Proposition 6.7. If two systoles α and β intersect twice, one of the two

bounds two cusps.

Proof. The two curves cut each other into arcs α1, α2 and β1, β2.

Without loss of generality, we can assume `(α1) ≤ `(β1) ≤ 1
2 sys(S). Con-

sider γ1 = α1 ∪ β1 and γ2 = α1 ∪ β2. As γ1 and γ2 do not surround bigons,

they cannot be trivial and as they can be represented by curves of length

strictly less than sys(S), they must both bound a cusp. Hence β bounds

two cusps. �

From Proposition 6.7 we can easily deduce that systoles on surfaces with

at most one cusp intersect at most once, so in particular we find again the
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classical result for the case of closed surfaces. In the case of tori this can be

improved to show that a surface with twice intersecting systoles has at least

three cusps.

Lemma 6.8. If S ∈M1,2 and α, β are systoles of S, then i(α, β) ≤ 1.

Proof. Suppose two systoles α and β intersect twice. Then sys(S) ≥
4 arcsinh 1 (see [GS05]) and by Proposition 6.7 one of the two curves bounds

two cusps. Cut the surface along α and consider the one-holed torus com-

ponent. The length of the shortest closed geodesic γ in the one-holed torus

which doesn’t intersect α satisfies (see [Par14])

cosh
`(γ)

2
≤ cosh

`(α)

6
+

1

2

and `(γ) ≥ sys(S) = `(α), so

cosh
`(α)

2
≤ cosh

`(α)

6
+

1

2

which contradicts `(α) ≥ 4 arcsinh 1. �

On the other hand, we can prove that for every genus there is a punctured

surface with systoles intersecting twice. The constructions will involve glu-

ing ideal hyperbolic triangles. Any such triangle has a unique maximal

embedded disk tangent to all three sides. We say that two such triangles

are glued without shear if their embedded disks are tangent.

Lemma 6.9. For every g ≥ 0, there exists n(g) ∈ N and a surface S ∈
Mg,n(g) with two systoles intersecting twice.

Proof. For g = 0, we can set n(0) = 4, as mentioned at the beginning

of section 1: any four times punctured sphere with at least two systoles will

satisfy the requirement. To show the existence of such a surface, pick any

S ∈ M0,4. If it has only one systole γ, start increasing the length of γ. As

the systole length of a punctured spheres is bounded above by a constant, if

`(γ) increases enough, γ is not a systole anymore, i.e. there is a simple closed

geodesic which is shorter than γ. So there exists a value of `(γ) such that γ

is a systole and there exists a simple closed curve δ of the same length.

For g ≥ 1, we use a building block constructed as follows. Consider a square

and a triangulation of it with 32 triangles, given by first subdividing the

square into a grid of 16 squares and then adding one diagonal for all squares

as in Figure 4. Each of the triangles in the square will be replaced by an

ideal hyperbolic triangle and all gluings will be without shear.

For g = 1, glue opposite sides of the square (again triangles are glued without

shear) to obtain a torus with n(1) = 16 cusps.
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Figure 4. The triangulation of the square

For g ≥ 2, consider a polygon obtained by gluing a 1× (g− 1) rectangle and

a 1× 2(g − 1) rectangle along the long sides, as in Figure 5.

Figure 5. The polygon for g = 3

Think of this polygon as a 4g-gon (with sides corresponding to sides of

the squares). Fix an orientation and choose a starting side, to identify the

4g sides following the standard pattern a1b1a
−1
1 b−1

1 . . . agbga
−1
g b−1

g to obtain

a genus g surface. If we now replace each 1 × 1 square by the building

block (always gluing adjacent triangles without shear), we get a surface of

genus g with a decomposition into 32 · 3(g − 1) ideal triangles. Since it

is a triangulation, the number of edges is 3
2 · 32 · 3(g − 1). By an Euler

characteristic argument, this implies that the surface has n(g) = 46g − 46

cusps.

For any g ≥ 1, consider the set Cg of curves surrounding pairs of cusps which

are connected by an edge between vertices of degree 6 in the triangulation

of the surface. By construction, each of these intersects another such curve

twice and we defer the proof that these curves are systoles to Lemma 6.10.

�

We now prove our claim that the curves in Cg are indeed systoles.

Lemma 6.10. For all g ≥ 1, the curves in Cg are systoles.

Proof. Consider the triangulation of the surface. For g = 1, all vertices

are of degree 6. When g ≥ 2, the pasting scheme associates all exterior

vertices of the 4g-gon and the point in the quotient has degree 12g − 6 (as
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we can check by applying the hand-shaking lemma to the graph given by

the triangulation). The remaining vertices are all of degree 6. We denote

by Γ the graph dual to the triangulation. From what we’ve just said, for

g = 1, cutting the surface along Γ decomposes the surface into hexagons.

When g ≥ 2, cutting along Γ decomposes the surface into hexagons and a

single (12g − 6)-gon.

Any simple closed oriented geodesic γ on the surface can be homotoped

to a curve on Γ. At every vertex crossed by the curve, the orientations

on the surface and on the curve give us a notion of “going left” or “going

right”. We can associate to γ a word w in the matrices L =

(
1 1

0 1

)
and

R =

(
1 0

1 1

)
, where each L corresponds to a left turn and each R to a

right turn. This way of understanding curves on “zero shear surfaces” is

fully explained in [BM04]. In particular, Brooks and Makover show how to

compute the length of these curves in terms of the associated word:

`(γ) = 2 arccosh

(
Tr(w)

2

)
.

Note that if w is a word associated to a non-oriented curve γ, then also the

word w′, obtained by reading w backwards and replacing each L with an R

and each R with an L, or any cyclic permutation of w and w′ are associated

to γ.

Each curve in Cg corresponds to the word w0 = RL4RL4 (or LR4LR4, or

any cyclic permutation of these, depending on the choice of an orientation

and of a starting point on the curve), which via a simple computation has

trace 34. To show that the curves in Cg are systoles, it is enough to show

that all other words corresponding to simple closed geodesics have trace at

least 34.

We use the following remark (see for instance [Pet13]):

Remark 6.11. If a word can be written as w = . . . w1 . . . w2 . . . wk . . . , then

Tr(w) ≥ Tr
(
wσ(1) . . . wσ(k)

)
for any cyclic permutation σ of 1, . . . , k.

Let γ be a simple closed geodesic which is not in Cg. First we observe that

we only need to consider curves represented by circuits in Γ. Indeed, if

γ corresponds to a closed path which contains an essential (i.e. not cor-

responding to a curve going around a cusp) circuit γ′, the word of γ will

contain the word of γ′. By Remark 6.11, γ′ is at most as long as γ and we

can consider γ′ instead. Otherwise, if γ is formed from non-essential circuits,
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it should contain at least two of them. Note that since non-essential circuits

surround a cusp, they trace a hexagon or a (12g − 6)-gon. If both these

circuits surround hexagons, we are in one of the following situations:

In case (a), a word associated to the curve contains RL5 . . . RL5 and in case

(b) it contains LR5 . . . RL5. In both cases, by Remark 6.11 and a simple

computation, their traces are bigger than 34. Now if one of the two circuits

surrounds the vertex of the triangulation of degree 12g−6, the curve is even

longer.

Suppose then that γ is represented by an essential circuit. If it passes

through five consecutive edges of a hexagon (said differently, a corresponding

word contains R4) and is not in Cg, the following modification of the curve

(see figure 6) provides an essential circuit.

Figure 6. Shortening a curve

A word of the curve on the left contains LR4L, while the one of the curve

on the right contains R2, so the trace decreases (again by Remark 6.11) and

we obtain a shorter curve.

We now assume a word w representing γ does not contain L4 or R4 and as

such it is made of blocks of type LiRj , for 1 ≤ i, j ≤ 3. If w is made of four

or more such blocks, then

Tr(w) ≥ Tr((LR)4) > 34.

Moreover, the length of w is at least 7, as the shortest circuits in Γ are of

length 6 and correspond to curves surrounding cusps. With this in hand,

one needs to check the finite set of words w made of blocks as above, of
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length at least 7, and of trace at most 33. To do this one can proceed as

follows.

Consider first the case of words made by two blocks. The conditions above

give the following system of equations:
Tr(LiRjLkRl) ≤ 33

0 < i, j, k, l < 4

i+ j + k + l ≥ 7

where we only look for integer solutions. Note that as the cyclic permutation

of a word represents the same curve as the word itself, we can add the

condition i + j ≤ k + l to reduce the number of solutions. Now we can

solve the system and obtain a set of words. We further reduce the number

of works by remarking that LiRjLkRl and LlRkLjRi represent the same

curve, just with a different choice of orientation. It is then straightforward

to check that the curves corresponding to these words do not correspond to

simple closed geodesics on the surface.

The case of words made by three blocks can be treated in the same way. �

2. Kissing number bound

The goal of this section is to prove an upper bound for the kissing number

depending on the systole length and then deduce a bound depending only

on the signature, using the known systole bounds.

As we have seen, systoles on punctured surfaces can have different topolog-

ical configurations. This suggests a subdivision of the set of systoles into

three sets and we will give separate bounds for the cardinalities of each

subset.

We say that two simple closed geodesics α and β bound a cusp if they form

a pair of pants with a cusp. We define:

A(S) := {α ∈ S(S) |α bounds two cusps}
B(S) := {α ∈ S(S) \A(S) | ∃β ∈ S(S) \A(S) s.t. α and β bound a cusp}
C(S) := S(S) \ (A(S) ∪B(S)).

Note that by Proposition 6.7 two systoles in S(S) \ A(S) intersect at most

once.

2.1. Bound on |A(S)|. We have already seen in Lemma 5.5, a curve

of length ` bounds two cusps c1 and c2 if and only if

d(Hc1 ,Hc2) = d(`) := 2 log cosh
`

4
.
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To bound |A(S)|, we will bound the number of pairs of cusps at distance

d(sys(S)).

Lemma 6.12. Let S be a surface with sys(S) = ` and c a cusp of S. There

are at most b2 cosh(`/4)c cusps c′ which satisfy d(Hc,Hc′) = d(`).

Proof. Suppose c1 and c2 are two cusps such that

d(Hc,Hc1) = d(Hc,Hc2) = d(`).

Since sys(S) = `, the distance betweenHc1 andHc2 is at least d(`). Consider

the segment α realizing the distance between Hc and Hc1 , the segment β

realizing the distance between Hc and Hc2 and the shortest arc γ of ∂Hc
bounded by the endpoints of α and β.

Let δ be the unique geodesic segment freely homotopic with endpoints on

∂Hc1 and ∂Hc2 to the curve α ∪ β ∪ γ. Then its length is at least d(`).

Figure 7. The non-geodesic hexagon

By a direct computation on the (non-geodesic) hexagon determined by α,

β, δ and the three horocycles, one can show that

`(b) ≥ 1

cosh `
4

.

Since ∂Hc has length 2, the number of cusps around p at distance d(`) is

bounded above by

2

/
1

cosh `
4

,

which proves the claim as we are bounding an integer. �

As a consequence, we get the following.

Proposition 6.13. For S ∈Mg,n with sys(S) = `

|A(S)| ≤ n

2
b2 cosh(`/4)c.
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Proof. There are n cusps, each of which can be surrounded by at most

b2 cosh(`/4)c cusps at distance d(`). The result follows as each curve sur-

rounds two cusps. �

It is actually possible to get an upper bound for |A(S)| in a simpler way.

Lemma 6.14. If S has signature (g, n), then |A(S)| ≤ 3(2g − 2 + n).

Proof. Consider the set of cusps; if there is a systole bounding them, we

join them with a simple geodesic lying in the pair of pants determined by the

systoles. We complete this set of geodesics into an ideal triangulation (i.e. a

decomposition in ideal triangles) of the surface. The number of vertices of

the triangulation is n, and if e is the number of edges, e ≥ |A(S)|. Since we

have a triangulation, the number of triangles is 2e
3 . The Euler characteristic

of the compactified surface is 2− 2g, so

n− e+
2e

3
= 2− 2g.

Thus

|A(S)| ≤ e ≤ 3(2g − 2 + n).

�

Interestingly, the bound of Lemma 6.14 can be deduced by the one of Propo-

sition 6.13, plugging in the systole bound of Theorem 5.4. For surfaces of

genus at least one, we will use the bound of Lemma 6.14, but we will need

the sharper bound of Proposition 6.13 for punctured spheres.

2.2. Bound on |B(S)|. Fix a cusp c and define

B(c) := {α ∈ B(S) | ∃β ∈ B(S) s.t. α and β bound c}.

Any curve α ∈ B(c) is at a fixed distance D(`) from Hc. By direct compu-

tation in the pair of pants bounded by α, c and some other β ∈ B(c), one

obtains

D(`) := log
2 cosh `

2

sinh `
2

.

Suppose that (α, β) and (γ, δ) are two pairs of systoles in B(S) which bound

c. Then γ has to pass through the pair of pants determined by α, β and c,

so it must intersect α or β. Since curves in S(S) \ A(S) pairwise intersect

at most once, then i(α, γ) = i(β, γ) = 1, and the same holds for δ.

Lemma 6.15. Let S be a surface of signature (g, n) 6= (1, 1). If α and β are

systoles of length ` intersecting once, their angle of intersection satisfies

sin∠(α, β) ≥ sin θ` :=


2√
5
, ` < 2 arccosh 3

2√
2 cosh `

2
+1

cosh `
2

+1
, ` ≥ 2 arccosh 3

2 .
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In particular, the angle of intersection is bounded below by a function θ` that

behaves like e−`/4 as ` goes to infinity.

Note that also [Par06, Lemma 2.4] gives a lower bound on the angle of

intersection of two systoles intersecting once, with the same order of growth.

Proof. Consider the two systoles and the one holed torus T they de-

termine. Since (g, n) 6= (1, 1), the boundary component δ of T is a simple

closed geodesic.

As α and β are systoles of S, they are also systoles of T . As such they

satisfy the systole bound for T which depends on the length of δ, namely

(see [Par14])

cosh
`(δ)

6
≥ cosh

`

2
− 1

2
.

We first consider the case when ` ≥ 2 arccosh 3
2 . We have cosh `

2 −
1
2 ≥ 1

and the condition stated above is non empty. Cut T along α and consider

the shortest curve h connecting the two copies of α.

Figure 8. The torus T with the curves α, β and h

By hyperbolic trigonometry, using cosh `(δ)
6 ≥ cosh `

2 −
1
2 , a direct computa-

tion provides

coshh ≥
4 cosh2 `

2 − cosh `
2 − 1

cosh `
2 + 1

.

Now consider one of the two right-angled triangles determined by arcs of α,

β and h. We have

sinh h
2

sin∠(α, β)
= sinh

`

2

which, together with the estimate on h, yields

sin∠(α, β) ≥

√
2 cosh `

2 + 1

cosh `
2 + 1

.
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If ` < 2 arccosh 3
2 , we deduce the inequality

sin∠(α, β) ≥ 2√
5

by arguing as above, but replacing the estimate cosh `(δ)
6 ≥ cosh `

2 −
1
2 by

`(δ) ≥ `. �

Fix now two systoles α and β which bound a cusp c; denote by P the pair

of pants we obtain. As the two boundary curves of P have the same length,

there is an isometric involution ϕ of P that sends α to β (the rotation of

angle π around the cusp). If c is bounded by two other systoles γ and δ,

the involution sends γ ∩ P to δ ∩ P, because of the symmetry of the pair

of pants determined by γ, δ and c. If we quotient P by ϕ and we consider

the image of B(c), we get a set of geodesics at distance D(sys(S)) from a

horoball of area one, all pairwise intersecting with angle at least θsys(S). This

observation is crucial to show the following result.

Lemma 6.16. If S is a surface of signature (g, n) 6= (1, 1) and systole length

sys(S) = `, for any cusp c the number of elements in B(c) is bounded above

by

m(`) :=
cosh `

2

sinh `
2

2

sin θ`
2

.

Proof. The situation is as in the following figure which locally repre-

sents the elements of B(c) under the quotient by ϕ. Note that every element

in the quotient by ϕ represents two elements from B(c).

Figure 9. Geodesics around a horoball

The inner circle (which we will refer to as the inner horocycle) represents

the quotient horoball of area one and the external one is the horocycle at

distance D(`) from the horoball of area one. By looking at the unique or-

thogonal geodesics between elements of B(c)
/
ϕ and the inner horocyle, we

can determine a cyclic ordering on the elements of B(c)
/
ϕ . Two neighbor-

ing geodesics with respect to this ordering, determine a subarc on the inner
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horocycle as follows. We consider the orthogonal geodesic between them

and the inner horocycle and take the subarc of the horocyle which forms a

pentagon with the two geodesics and the orthogonal (see Figure 2.2). By a

direct computation, using the lower bound on the angle of intersection, this

subarc on the inner horocycle is of length at least

sinh `
2

cosh `
2

sin
θ`
2
.

These subarcs are all disjoint and are in the same number as the elements

of B(c)
/
ϕ (keep in mind that any two elements of B(c)

/
ϕ intersect).

From this we deduce an upper bound on
∣∣∣B(c)

/
ϕ

∣∣∣:
1

sinh `
2

cosh `
2

sin θ`
2

.

Now 2
∣∣∣B(c)

/
ϕ

∣∣∣ = |B(c)|, which completes the proof. �

As a consequence, we obtain an upper bound on |B(S)|.

Proposition 6.17. If S ∈ Mg,n, (g, n) 6= (1, 1), has systole of length

sys(S) = `, then

|B(S)| ≤ nm(`).

Proof. We have

B(S) =
⋃

c cusp

B(c)

and for every cusp c

|B(c)| ≤ m(`).

�

2.3. Bound for |C(S)|. By definition, elements of C(S) are systoles

such that

• they pairwise intersect at most once and

• no two disjoint curves bound a cusp.

We follow a similar argument to one found in [Par13] to obtain an upper

bound on |C(S)|. In particular we will need a collar lemma for systoles.

Lemma 6.18. Let sys(S) = ` and consider α, β ∈ C(S). If α and β do not

intersect, then they are at distance at least 2r(`), where

r(`) = arcsinh
1

2 sinh `
4

.
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Proof. Fix a pair of pants with α and β as boundary and consider the

third boundary component γ. Since α and β are in C(S), they do not bound

a cusp, so γ is a simple closed geodesic of length at least `. The result follows

by a standard trigonometric computation. �

As a consequence, if α and β in C(S) pass through the same disk of radius

r(`) then they intersect.

Moreover, we have seen in Lemma 6.15 that there is a lower bound on the

angle of intersection of systoles intersecting once. With this in hand we

prove the following.

Lemma 6.19. If (g, n) 6= (1, 1), sys(S) = ` and α and β in C(S) pass through

a disk of center p and radius r(`), the distance between p and the point q of

intersection between α and β satisfies

d(p, q) ≤ R(`),

where

sinhR(`) =


5

8 sinh `
4

, ` < 2 arccosh 3
2

cosh `
2

+1

2 sinh `
4

√
2 cosh `

2
+1
, ` ≥ 2 arccosh 3

2 .

Note that R(`) is bounded for ` ≥ 2 arcsinh 1.

Proof. The proof is analogous to the proof of [Par06, Lemma 2.6].

Fix pα ∈ α and pβ ∈ β lying in Dr(`)(p). We have two triangles of vertices

p, pα, q and p, pβ, q, and the sum of the two angles θα and θβ at q is the angle

of intersection ∠(α, β). Suppose θα ≥ ∠(α,β)
2 and consider the angle η of the

triangle p, pα, q at pα.

Figure 10. α and β passing though a disk of radius r(`)

Then
sin η

sinh d(p, q)
=

sin θα
sinh d(p, pα)

.

Using θα ≥ ∠(α,β)
2 , d(p, pα) < r(`) and Lemma 6.15, we obtain the claimed

result. �

We are now in a position to obtain a bound on |C(S)|.
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Proposition 6.20. If S ∈ Mg,n, g 6= 0 and (g, n) 6= (1, 1), has systole of

length sys(S) = `, then

|C(S)| ≤ 200
e`/2

`
(2g − 2 + n).

Proof. If ` ≤ 2 arcsinh 1, then all systoles are pairwise disjoint, so

|C(S)| ≤ Kiss(S) ≤ 3g − 3 + n.

We now suppose that ` > 2 arcsinh 1. Consider S̃ = S \
⋃
c cuspDw(`)(c),

where

w(`) = arcsinh
1

sinh `
2

is the width of a collar around a systole. By the collar lemma, each curve

of C(S) is contained in S̃. We cover S̃ with disks of radius r(`). Then the

cardinality of C(S) is bounded above by

F (S)G(S)

H(S)
,

where

F (S) = #{balls of radius r(`) needed to cover S̃}
G(S) = #{curves in C(S) crossing a ball of radius r(`)}
H(S) = #{balls of radius r(`) a curve in C(S) must cross}

To bound |C(S)|, we need to give upper bounds for F (S) and G(S) and a

lower bound for H(S).

Upper bound for F (S)

We have

F (S) ≤ max #
{

embedded balls of radius r(`)
2 which are pairwise disjoint

}
≤

≤ area(S̃)

area
(

ball of radius
r(`)

2

) ≤ area(S)

2π
(

cosh r(`)
2 − 1

) ≤ 8(2g − 2 + n)e`/2.

Upper bound for G(S)

We proceed as in the proof of Theorem 2.9 in [Par06], by reasoning in the

universal cover and estimating how many geodesics, pairwise intersecting at

an angle of at least θ`, can intersect a disk of radius r(`). We obtain

G(S) ≤ π

2

sinh(R(`) + arcsinh(1))

arcsinh(sin θ`)
≤ 5π

2 arcsinh(sin θ`)
.

Lower bound for H(S)
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To cover a curve of length ` with disks of radius r(`) we need at least `
2r(`) .

So

H(S) ≥ `

2 arcsinh 1
2 sinh ell

4

≥ ` sinh
`

4
.

By putting the three bounds together and considering that sinh `
4 arcsinh(sin θ`)

is bounded below by 1/3 for ` > 2 arcsinh 1 we obtain the claimed result. �

2.4. Proof of the new bounds. Using Propositions 6.13, 6.17 and

6.20, we get an upper bound for the kissing number of a surface in terms of

its signature and its systole length.

Theorem 6.21. If S ∈ Mg,n (g ≥ 1, (g, n) 6= (1, 1)) has systole of length

sys(S) = `, then

Kiss(S) ≤ 20n cosh
`

4
+ 200

e`/2

`
(2g − 2 + n).

As a consequence, we deduce a bound on the kissing number which is inde-

pendent on the systole length.

Theorem 6.22. There exists a universal constant C (which we can take to

be 2× 104) such that for any S ∈Mg,n, g ≥ 1, its kissing number satisfies

Kiss(S) ≤ C (g + n)
g

log(g + 1)
.

Proof. It follows from the bounds in Theorem 6.21 and bounds on

systole lengths. Precisely we insert the Schmutz Schaller bound (Theorem

5.4) in the term cosh `
4 and we use Theorem 5.7 for the e`/2

` term. For

(g, n) = (1, 1), we recall the well known fact that Kiss(S) ≤ 3 (there can be

at most 3 distinct curves that pairwise intersect at most once on a one-holed

torus). �

Note that, as in the closed surface case studied by Parlier in [Par13], this

bound is sub-quadratic in the Euler characteristic.

In the case of punctured spheres, we can get a bound which is linear in the

number of cusps.

Theorem 6.23. For every S ∈M0,n, the number of systoles satisfies

Kiss(S) ≤ 7

2
n− 5.

Proof. By Proposition 6.13 and Schmutz Schaller’s upper bound for

the systole, we have

|A(S)| ≤ n

2

⌊
2(3n− 6)

n

⌋
=
n

2

⌊
6− 12

n

⌋
≤ 5

2
n.
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Moreover, systoles are separating, so can only pairwise intersect an even

number of times. This implies that systoles in S(S) \ A(S) are pairwise

disjoint and hence part of a pants decomposition. Note that any pants

decomposition of a sphere contains at least two curves bounding two cusps:

indeed, the dual graph to the pants decomposition is a tree, so it has at least

two leaves, which correspond to curves bounding two cusps. This implies

that

|S(S) \A(S)| ≤ #curves in a pants decomposition− 2 = n− 5.

�

By using short pants decompositions where every curve is of equal length,

it is easy to obtain a family of punctured spheres with a number of systoles

that grows linearly in the number of cusps. Matching the 7
2n − 5 upper

bound from this theorem seems much more challenging.
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