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Exercise 1.8
Prove that the subspace topology is a topology.

Solution: let (X, τ) be a topological space, Y ⊂ X and τY the subspace topology.
Let us verify the three conditions for a collection of subsets to be a topology:

1. ∅ = ∅ ∩ Y ∈ τY , since ∅ ∈ τ . Similarly, Y = X ∩ Y ∈ τY , since X ∈ τ ;

2. let Ui, i ∈ I be a collection of open sets of Y . Then, by definition of the
subspace topology, for every i ∈ I there is Vi ∈ τ such that Ui = Vi ∩ Y . So

⋃
i∈I

Ui =
⋃
i∈I

(Vi ∩ Y ) =

(⋃
i∈I

Vi

)
∩ Y ∈ τY ,

since
⋃
i∈I Vi ∈ τ (τ is a topology);

3. let U1, . . . , Un be a finite collection of open sets of Y . As before, for every
i = 1, . . . , n there is Vi ∈ τ such that Ui = Vi ∩ Y . Then

n⋂
i=1

Ui =
n⋂
i=1

(Vi ∩ Y ) =

(
n⋂
i=1

Vi

)
∩ Y

and since τ is a topology,
⋂n
i=1 Vi ∈ τ and thus

⋂n
i=1 Ui ∈ τY , by definition of

the subspace topology.

Exercise 1.21
Show that S = [−1, 1] × [−1, 1] and D = {(x, y) ∈ R2 | x2 + y2 ≤ 1} are homeo-
morphic.

Solution: note that
D = {(x, y) ∈ R2 | ‖(x, y)‖ ≤ 1}

and
S = {(x, y) ∈ R2 | ‖(x, y)‖∞ ≤ 1},
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where ‖(x, y)‖∞ = max{|x|, |y|}. So we define the function

f : S → D

(x, y) 7→ ‖(x, y)‖∞
‖(x, y)‖

(x, y) if (x, y) 6= (0, 0)

(0, 0) 7→ (0, 0)

which sends v = (x, y) to the unique point (x′, y′) on the oriented ray from (0, 0)
and through v satisfying ‖(x′, y′)‖∞ = ‖(x, y)‖.

Continuity is shown as in any analysis course. Moreover, there is an obvious
inverse function, which can also be shown to be continuous in the same way:

g : D → S

(x, y) 7→ ‖(x, y)‖
‖(x, y)‖∞

(x, y) if (x, y) 6= (0, 0)

(0, 0) 7→ (0, 0)

so f is a homeomorphism.

Lemma
Let (X, τ) and (Y, σ) be topological spaces and f : X → Y a continuous function.
If Z ⊂ X is endowed with the subspace topology, then

f |Z : Z → Y

is a continuous function.

Proof. Let U ∈ σ. Then (f |Z)−1 (U) = f−1(U)∩Z; since f is continuous, f−1(U) ∈
τ , so (f |Z)−1 (U) is open in Z (by definition of the subspace topology).

Example 2.14
Let X = [0, 1]× [0, 1] and ∼ the equivalence relation defined in example 2.14. Then
T = X/∼ is a surface.

Partial solution: we want to find, for any P = [(x0, y0)] ∈ T , an open neighborhood
of P homeomorphic to an open set in R2. There are three possibilities for P : either
(x0, y0) does not belong to a side of X, or it belongs to a side, but not to a corner, or
it is a corner. We will give the details of the construction of an open neighborhood
and of a homeomorphism from the neighborhood to an open set of R2 only in the
first two cases. The idea for the third case is similar to the one for the second case,
but it becomes even more annoying to write down.
Notation: X̊ =]0, 1[× ]0, 1[.

An observation we will use throughout is the following: if (x, y) ∈ X̊, π((x, y)) =
[(x, y)] = {(x, y). In particular, π is injective on X̊.
Case 1: (x0, y0) ∈ X̊. Then there is ε > 0 such that B := Bε((x0, y0)) ⊂ X̊. Define
then

UP := π(B).
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Since π is injective on X̊,
π−1(UP ) = B,

so by definition of the quotient topology UP is open in T (as B is open in X).
Moreover, P ∈ UP , so UP is an open neighborhood of P .

Define f := π|B : B → UP . We now show that f is a homeomorphism, so that
f−1 : UP → B is the required homeomorphism between an open neighborhood of
P and an open set of R2.

1. f is bijective, because:

� π is injective on X̊, so f is injective;

� UP is defined to be the image of B via f , so f is surjective.

2. π is a continuous function and f is the restriction of a continuous function,
so by the lemma above f is continuous.

3. f is open: let U ⊂ B be an open set; we need to show that f(U is open, i.e.
(by the definition of the quotient topology) that π−1(f(U)) is open in X. If
we show that π−1(f(U)) = U , we are done, since U is open in X. Let us show
that, by proving the double inclusion:

� if (x, y) ∈ U , by the definition of f we have that π(x, y) = f(x, y) ∈ f(U),
i.e. (x, y) ∈ π−1(f(U)), thus U ⊂ π−1(f(U));

� if (x, y) ∈ π−1(f(U)), then π(x, y) ∈ f(U), i.e. there is (x̄, ȳ) ∈ U such
that π(x, y) = f(x̄, ȳ) = π(x̄, ȳ). By the observation above, this means
that (x, y) = ((x̄, ȳ) ∈ U . So π−1(f(U)) ⊂ U .

So f is an open continuous bijection and thus it is a homeomorphism.
Case 2: (x0, y0) belongs to a side of X, but it is not a corner. For simplicity, let us
assume then x0 = 0 and y0 6= 0. The other cases are analogous.

In this case
[(x0, y0)] = {(0, y0), (1, y0)}.

Let ε > 0 be small enough so that Bε((0, y0)) does not contain any corner of X.
Note that in particular ε ≤ 1

2
. Define

VP = π(Bε((0, y0))∩X)∪ π(Bε(1, y0)∩X) = π(Bε((0, y0))∩X)∪ π(Bε(1, y0)∩ X̊)

and let g : Bε((0, y0))→ VP be the map

g(x, y) =

{
π(x, y) if (x, y) ∈ Bε((0, y0)) ∩X
π(x+ 1, y) if (x, y) ∈ Bε((0, y0)) rX

VP is open because

π−1(VP ) = (Bε((0, y0)) ∩X) ∪ (Bε((1, y0)) ∩X) = (Bε((0, y0)) ∪Bε((1, y0))) ∩X

which is open in X, since it’s the intersection of an open set of R2 with X. So by
definition of the quotient topology VP is open.

Let us show that g is a homeomorphism.
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Bε((0, y0)
π

T

g

Figure 1: A depiction of the map g

1. g is a bijection because:

� suppose g(x1, y1) = g(x2, y2). If (x1, y1), (x2, y2) ∈ Bε((0, y0)) ∩X, then
g(xi, yi) = π(xi, yi), so g(x1, y1) = g(x2, y2) means π(x1, y1) = π(x2, y2).
But no two distinct points in Bε((0, y0)) ∩X are equivalent under ∼, so
(x1, y1) = (x2, y2). If (x1, y1) ∈ Bε((0, y0))∩X and (x2, y2) ∈ Bε((0, y0))r
X, then π(x1, y1) = g(x1, y1) = g(x2, y2) = π(x2 + 1, y2). By the condi-
tions on ε and (x2, y2), (x2 + 1, y2) ∈ X̊, so π(x2 + 1, y2) = {(x2 + 1, y2)}
and thus (x1, y1) = (x2 + 1, y2). But by the conditions on the xi and ε,
x1 6= x2+1, so we get a contradiction. We proceed similarly for the cases
(x2, y2) ∈ Bε((0, y0))∩X, (x1, y1) ∈ Bε((0, y0))rX and (x1, y1), (x2, y2) ∈
Bε((0, y0)) rX. So g is injective.

� let Q =∈ VP . If Q ∈ π(Bε(0, y0) ∩ X, there is (x, y) ∈ Bε(0, y0) ∩ X)
such that

Q = π(x, y) = g(x, y).

If instead Q ∈ π(Bε(1, y0)∩ X̊), there is (x, y) ∈ Bε(1, y0)∩ X̊ such that
Q = π(x, y). Then (x− 1, y) ∈ Bε(0, y0) rX and

g(x− 1, y) = π((x− 1) + 1, y) = π(x, y) = Q.

In both cases, Q is the image of an element in Bε(0, y0), i.e. g is surjective.

2. g is continuous: let U ⊂ VP be an open set, i.e. π−1(U) ⊂ X is open. To show
that g−1(U) is open, we prove that given any point (x, y) ∈ g−1(U) there is
δ > 0 such that Bδ(x, y) ⊂ g−1(U). We have three cases: x > 0, x = 0 and
x < 0.

� if x > 0, then g(x, y) = π(x, y) and

π−1(π(x, y)) = {(x, y)} ⊂ π−1(U) ∩Bε(0, y0).

Since π−1(U) ∩ Bε(0, y0) is open in R2 (intersection of two open sets),
there is δ > 0 such that

Bδ(x, y) ⊂ π−1(U) ∩Bε(0, y0),

so
Bδ(x, y) = g−1(π(Bδ(x, y))) ⊂ g−1(U).
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� if x < 0, we argue similarly to the case x > 0.

� if x = 0, then g(0, y) = [(0, y)] and

π−1([0, y]) = {(0, y), (1, y)}.

We have:

(0, y) ∈ π−1(U)︸ ︷︷ ︸
open

⇒ ∃δ1 > 0 : Bδ1(0, y) ⊂ π−1(U)

⇒ Bδ1(0, y) ∩X ⊂ g−1(U)

and

(1, y) ∈ π−1(U)︸ ︷︷ ︸
open

⇒ ∃δ2 > 0 : Bδ2(0, y) ⊂ π−1(U)

⇒ Bδ2(0, y) rX ⊂ g−1(U).

Thus
Bδ(0, y) ⊂ g−1(U)

for δ = min{δ1, δ2}.

3. g is open: suppose U ⊂ Bε(1, y0) is open. Note that U is open in R2 too and

U = U+ ∪ U−

where U+ = {(x, y) ∈ U | x ≥ 0} and U− = {(x, y) ∈ U | x ≤ 0}. Note that

U+ ∩ U− = U0,

where U0 = {(x, y) ∈ U | x = 0}. Now

g(U) = g(U+) ∪ g(U−) = π(U+) ∪ π(U− + (1, 0)),

where given a set A ⊂ R2, we define

A+ (1, 0) = {(x+ 1, y) | (x, y) ∈ A}.

Moreover π−1(g(U)) = π−1(g(U+)) ∪ π−1(g(U−)). We have:

π−1(g(U+)) = U+ ∪ (U0 + (1, 0)) and π−1(g(U−)) = (U− + (1, 0)) ∪ U0

so

π−1(g(U)) = U+ ∪ (U0 + (1, 0)) ∪ (U− + (1, 0)) ∪ U0 = U+ ∪ (U− + (1, 0)).

Since U+ = U ∩X, U+ is open in X, and so is U−+ (1, 0) = (U + (1, 0)∩X)
(since U + (1, 0) is open in R2). Thus π−1(g(U)) is a union of two open set,
hence open. So g(U) is open in T .
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Figure 2: An octagon with opposite sides identified

As g is a continuous open bijection, it is a homeomorphism and so

g−1 : VP → Bε(0, y0)

is also a homeomorphism.

Exercise 3.17
Verify that the surface in Figure 2 is homeomorphic to S2.

Solution: since S is the quotient of a single polygon, it is path-connected and
compact. If we look at Figure 3, the green arrows indicate the orientation induced
on the sides by the counterclockwise orientation of the boundary of the octagon.
We can then check that for every pair of sides with the same labels, exactly one
of the two sides has an arrow giving the same orientation as the green arrow. So
S is orientable. So by the classification theorem of surfaces we know that S is

Figure 3: Checking orientability

homeomorphic to Sg, for some g ≥ 0, and thus χ(S) = χ(Sg) = 2 − 2g. Let us
compute χ(S), to be able to compute g. We have (see Figure 4:

� f = 1 because we have only one polygon;

� e = 8
2

= 4;
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� v = 1 because: a ∼ b, since they are both the starting point of a side labelled
A, b ∼ c because they are both the endpoint of a side labelled B, c ∼ d
(starting point of C), d ∼ e (endpoints of D), e ∼ f (endpoints of A),
f ∼ g (starting points of B) and g ∼ h (endpoints of C). So all vertices are
equivalent, i.e. there is a single equivalence class of vertices.

Thus
χ(S) = 1− 4 + 1 = −2

and hence g = 2: S is homeomorphic to S2.

a b

c

d

ef

gg

h

Figure 4: Computing the Euler characteristic
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