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1 Lecture 1

1.1 Surfaces: an informal introduction

Our first idea of a surface is probably something two-dimensional. The obvious
example of a two-dimensional mathematical object is the plane R2. We want to say
that a surface is something that, sufficiently close to any point, looks like the plane.
Let’s imagine being in the middle of the ocean: since we are so small compared to
the size of the ocean, we see such a small portion that it looks like a plane to us.
It’s the same that (probably) happens to an ant on a balloon: it does not notice
that it curves, nor that globally it’s not a plane at all.

Our first objective is to formalize the idea of a surface as something that, suffi-
ciently close to any point, looks like the plane. We need to formalize the concepts
of sufficiently close and looking like. To speak about sufficiently close it would be
enough to speak about a way to measure distances and say that sufficiently close
to a point means at distance bounded by some very small number. But for the
looking like part, if we think of a piece of sphere and a piece of plane, since one is
curved and the other is flat, we need to deform the piece of the sphere to make it
coincide to a piece of the plane. The key concept here will be that of continuous
deformations – intuitively, deformations which not involve cutting or gluing. The
correct setup to describe such deformations is that of a branch of geometry called
topology. The first part of this course will be a quick introduction to this area of
mathematics.

1.2 Point-set topology

Definition 1.1. Let X be a set. A topology on X is a collection τ of subsets of X
(τ ⊂ P(X)) such that:

1. ∅, X ∈ τ ;

2. the union of any collection of sets in τ is in τ (i.e. for every set of indices I

and for every Ui ∈ τ, i ∈ I,
⋃
i∈I

Ui ∈ τ);
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3. the intersection of any finite collection of sets in τ is in τ (i.e. for every integer

n ≥ 1, for every U1, . . . , Un ∈ τ ,
n⋂
i=1

Ui ∈ τ).

Elements of τ are called open sets. The pair (X, τ) is called topological space.

Definition 1.2. Let (X, τ) be a topological space. A set C is closed if its com-
plement X r C is open. For x ∈ X, an open neighborhood of x is an open set
containing x.

Remark 1.3. It follows from the definition of topology and De Morgan’s laws (the
way union, intersection and taking the complement interact) that

1. ∅ and X are closed sets;

2. the intersection of an arbitrary collection of closed sets is closed;

3. a finite union of closed sets is closed.

Note in particular that being open and being closed are not mutually exclusive: for
instance, ∅ and X are open and closed.

Let us look at some examples.

Example 1.4. You have probably already seen the definition of open set in Rn: a
subset U ⊂ Rn is open if for every x ∈ U there is r > 0 (depending on x) such that
Br(x) := {y ∈ Rn | ‖y − x‖ < r} ⊂ U . Here ‖ · ‖ denotes the standard norm on
Rn (‖y‖ =

√∑n
i=1 y

2
i ), so that Br(x) is the open ball centered in x and of radius

r. Let us show that the collection of open sets is a topology, by proving it satisfies
the three properties of Definition 1.1:

1. ∅ is open, because the condition is trivially satisfied, and Rn is open because
for every x ∈ Rn and for every r > 0, Br(x) ⊂ Rn;

2. if Ui, i ∈ I, is a collection of open sets and x ∈
⋃
i∈I

Ui, then there is i ∈ I such

that x ∈ Ui. As Ui is open, there is r > 0 such that Br(x) ⊂ Ui and thus

Br(x) ⊂
⋃
i∈I

Ui;

3. let U1, . . . , Uk be a finite collection of open set and let x ∈
k⋂
i=1

Ui. For every i

there is ri > 0 such that Bri(x) ⊂ Ui. Then r := min{ri | i = 1, . . . , k} > 0

and Br(x) ⊂ Ui for every i, that is, Br(x) ⊂
k⋂
i=1

Ui.

Note that the intersection of an arbitrary family of open sets is not necessarily open:
for instance, for every n ∈ N, B1/n(x) is an open set, but⋂

n∈N

B1/n(x) = {x}
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and {x} is not open.
Recall that points are closed subsets of Rn.

Example 1.5. Let X = {a, b, c} and τ = {∅, X, {a}}. Then τ is a topology on X.
Indeed:

1. ∅, X ∈ τ ;

2. if Ui ∈ τ , i ∈ I, for some set of indices I, then
⋃
i∈I Ui is either X, if one of

the Ui is X, or {a}, if no Ui is X and some Ui is {a}, or ∅ otherwise. In any
case, the union is in τ ;

3. similarly, we can check that any finite intersection is in τ .

Example 1.6. If X is a singleton, X = {p}, there is only one possible topology on
it: τ = {∅, X}, because these two sets need to be part of any topology and there
are no other subsets.

Usually, we will consider Rn with the topology described in Example 1.4, in
which case we will usually not specify the topology. But it is important to notice
that a topological space is really a pair, given by a set and a topology on it. For
instance, we could give a completely different topology to Rn: we could consider
σ = {∅,Rn}.

Often we are given a topological space and we want to consider one of its subset
as a topological space in itself (“forgetting” that it was a subset). Here is how we
do it:

Definition 1.7. Let (X, τ) be a topological space and Y a subset of X. The
subspace topology on Y is the collection τY := {U ∩ Y | U ∈ τ}.

Exercise 1.8. Prove that the subspace topology is a topology.

Example 1.9. Let Y = [−1, 1]× [−1, 1] ⊂ R2. Both

U =

{
x ∈ Y | ‖x‖ < 1

2

}
and

V = [−1, 0[×[−1, 1]

are elements of τY (we say that they are open as subsets of Y ), because

U = Y ∩B1/2(0)

and
V = Y ∩ ( ]−∞, 0[×R)

and B1/2(0), ]−∞, 0 [×R are open sets of R2. Note though that while U is an open
set of R2 as well, V is not!

Exercise 1.10. Is there a necessary and sufficient condition on Y ⊂ X so that
τY ⊂ τ (i.e. every set which is open in Y is open in X as well?
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Another simple operation to produce new topological spaces from old ones is to
take disjoint unions:

Definition 1.11. Let (X1, τ1) and (X2, τ2) be two topological space. Their disjoint
union is the topological space (Y, σ) given by

Y = X1 tX2

and
σ = {U ⊂ X1 tX2 | U ∩X1 ∈ τ1, U ∩X2 ∈ τ2}.

Example 1.12. R t R is the topological space

X = R t R = {(p, i) | p ∈ R, i = 1, 2}

with open sets U ∈ X such that {p | (p, 1) ∈ U} and {p | (p, 2) ∈ U} are open in
R. Graphically, we can think of it1 as two disjoint lines in the plane.

Similarly, we can consider R t {p}; here open sets are either of the form U ,
where U ⊂ R is open, or U ∪{p}, where again U is an open subset of R. As before,
we can think of this space as a line and a point disjoint from it in the plane.

With the notion of topology, we are now able to formalize the concept of suf-
ficiently close, by saying in a (small enough) open neighborhood of a point. The
next concept we need to formalize is that of looking like. Essentially, we will want
a notion that identifies two topological spaces if the sets are in bijection and this
bijection respects the topologies (gives a bijection between open sets). This will
be given by the existence of a continuous function with continuous inverse. So we
first need to define what a continuous function is. We already have the concept of
continuity for functions f : Rn → Rm:

Definition 1.13. A function f : Rn → Rm is continuous if for every x0 ∈ Rn and
for every ε > 0 there is δ > 0 such that for every x ∈ Rn with ‖x − x0‖ < δ, we
have ‖f(x)− f(x0)‖ < ε.

But topological spaces don’t have a norm (or more generally a notion of dis-
tance). So we want to try to find an equivalent definition of continuity which can
be expressed in terms of open sets.

So note that if f(x0) = y0, we can rephrase the notion of continuity (at x0) by
saying that for every ε > 0 there is δ > 0 such that

f (Bδ(x0)) ⊂ Bε(y0).

Now, if U is an open set of Rm, for every y ∈ U there is εy > 0 such that Bεy(y) ⊂ U .
If x ∈ Rn is such that f(x) = y, then we have seen that there is δx > 0 such that

f (Bδx(x)) ⊂ Bεy(y) ⊂ U,

or
Bδx(x) ⊂ f−1(U).

In particular this shows that if U is open, every point in f−1(U) has a small open
ball around it which is contained in f−1(U), i.e. f−1(U) is open.

In fact one can show that this condition characterizes continuity:

1I.e. it looks like – we will formalize this concept soon.
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Proposition 1.14. A function f : Rn → Rm is continuous (in the sense of Defini-
tion 1.13) if and only if for every U ⊂ Rm open, f−1(U) is open.

So, for general topological spaces, we can define continuity as follows, as a
generalization of what happens in Rn:

Definition 1.15. Let (X, τ) and (Y, σ) be two topological spaces. A function
f : X → Y is continuous if for every V ∈ σ, f−1(V ) ∈ τ (in words: if the preimage
of any open set is an open set).

To say that two topologically spaces are “topologically” the same, we want to
say that one can be continuously deformed into the other and vice versa. We could
formalize the concept of continuously deforming one object into another by saying
that there is a continuous map from one to the other, but we also want a way to go
back, to reverse the deformation. This leads us to the concept of homeomorphism:

Definition 1.16. Let (X, τ) and (Y, σ) be two topological spaces. A function
f : X → Y is a homeomorphism if it is continuous, bijective and its inverse is
continuous. Two topological spaces are homeomorphic if there is a homeomorphism
between them.

Note that if f : X → Y is a bijection, f−1 is continuous if (by definition) for
every open U ⊂ X, (f−1)−1(U) = f(U) is open.

Definition 1.17. Let (X, τ) and (Y, σ) be two topological spaces. A function
f : X → Y is open if for every U ∈ τ , f(U) ∈ σ.

Using this definition and the observation before, we can also say that a homeo-
morphism is a continuous and open bijective map.

Let us look at some other topological spaces, the spheres:

Definition 1.18. The n-sphere is the topological space

Sn = {x ∈ Rn+1 | ‖x‖ = 1}

(with the subspace topology).

S0 S1 S2

R
R2 R3

−1 1

Figure 1: Spheres of dimension 0, 1 and 2

We can show what we have informally discussed before: the disjoint union of
two topological spaces looks like the two topological spaces disjointly embedded in
a bigger space (when this is possible). For instance, we can show:
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Example 1.19. S0 is homeomorphic to the disjoint union X t Y , where X = {a}
and Y = {b} are both singletons. There are two obvious bijections; we choose one
(but either would do):

f : S0 → X t Y
−1 7→ a

1 7→ b

We want to show that f is a homeomorphism. Let’s first show that it’s continuous:
open sets in X t Y are ∅, X, Y and X t Y (since, as mentioned before, there are
only two open sets each in X and Y ). Then

� f−1(∅) = ∅, which is open in S0;

� f−1(X t Y ) = S0, which is open in S0;

� f−1(X) = {−1} = S0 ∩ ]0, 2[, so it is open in S0, by definition of the subspace
topology, and similarly f−1(Y ) = {1} is open.

Similarly we can check that f is open: by what we have seen, the open sets in S0

are ∅, S0, {−1} and {1} and we can explicitly compute the images of all of them.
Note that S0 gives us an example of a space in which proper (i.e. different from

∅ and from the full set) subsets are open and closed at the same time: both its
points are open and closed.

Exercise 1.20. Formalize the fact that R t {p} is a line and a point in the plane:
show that it is homeomorphic to

X = {(x, 0) | x ∈ R} ∪ {(0, 1)} ⊂ R2

with the subspace topology.

Exercise 1.21. Show that S = [−1, 1]× [−1, 1] and D = {(x, y) ∈ R2 | x2+y2 ≤ 1}
are homeorphic.

Here’s an informal interpretation of this last example, which might give you an
intuition of what a homeomorphism here: if we think of the square S and the disk
D as made of rubber, we can stretch the disk onto the square and shrink the square
onto the disk. This is a bit the idea of what a homeomorphism does: it stretches,
but it does not tear (we cannot use scissors or poke a hole into our piece of rubber).

Exercise 1.22. Let (X, τ) be a topological space. Let Y ⊂ X. Prove that the
inclusion map Y ↪→ X is continuous, if Y has the subspace topology.

The concept of homeomorphism formalizes then the idea of looking like. So we
have all the tools necessary for giving a mathematical definition of a surface, which
we will do in the next lecture.
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2 Lecture 2

2.1 Surfaces: a formal introduction

Definition 2.1. Let (X, τ) be a topological space. X is a surface if it is locally
homeomorphic to R2, i.e. for every x ∈ X there is an open neighborhood U of x
and a homeomorphism between U and an open set of R2.

Actually, there are two technical conditions which need to be added to the
definition of surface: we require a surface to also be second countable and Hausdorff.
In practice, most “reasonable” topological spaces will satisfy these conditions, and
in particular all the ones we will consider, so we will forget about these technical
hypotheses.

We can replace, in the definition of surface, R2 by Rn, and describe spaces which
are n-dimensional:

Definition 2.2. A manifold of dimension n (or n-manifold) is a (second countable,
Hausdorff) topological space which is locally homeomorphic to R.

The most basic example of an n-manifold is Rn. More interesting examples are
the spheres, in all dimensions.

Example 2.3. The 2-sphere is the subspace of R3 given by

S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}.

The North pole is the point N = (0, 0, 1); the stereographic projection from the
North pole is the map

ϕ : S2 r {N} → R2

(x, y, z) 7→
(

x

1− z
,

y

1− z

)
.

Given a point P = (x, y, z) 6= N on the sphere, there is a unique line through N
and P , which intersects the plane z = 0 in R3 in a unique point (a, b, 0). One can
check that ϕ(P ) = (a, b).

It is possible to show that ϕ is actually a homeomorphism from S2 r {N} to
R2, the inverse map being given by

ϕ−1(X, Y ) =

(
2X

1 +X2 + Y 2
,

2Y

1 +X2 + Y 2
,
−1 +X2 + Y 2

1 +X2 + Y 2
.

)
Also, S2 r {N} is an open set of the sphere ({N} is a closed subset of R3, so

R3 r {N} is an open subset of R3 and thus

S2 r {N} = (R3 r {N}) ∩ S2

is an open subset of S2). So for every point of S2, except the North pole, we have
found an open neighborhood — S2 r {N} — homeomorphic to an open subset
of R2 — R2 itself. It is then not hard to imagine that we can similarly define a
stereographic projection from the South pole to show that also the North pole has
a neighborhood homeomorphic to R2. So S2 is a surface.
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Another example we would like to describe is the surface of a donut. There are
several ways to describe this surface, and we could for instance describe it as an
explicit subset of R3, as for the sphere. We will take a different viewpoint, which
will help us find many more examples of surfaces.

Start with a square. If we roll it up to glue the top side to the bottom side we
get a cylinder. Now if we bend it to glue the right circle to the left circle, we get
something that looks like the surface of a donut.

Figure 2: Folding and gluing a square to get the surface of a donut

To turn this procedure into a mathematical operation, we need to say what we
mean by gluing. What we need is the concept of equivalence relation:

Definition 2.4. An equivalence relation ∼ on a set X is a relation which is:

� reflexive, i.e. ∀x ∈ X, x ∼ x;

� symmetric, i.e. ∀x, y ∈ X, if x ∼ y, then y ∼ x;

� transitive, i.e. ∀x, y, z ∈ X, if x ∼ y and y ∼ z, then x ∼ z.

If x ∼ y, we say that x is equivalent to y.

Example 2.5. Let X be a collection of t-shirts. Having the same color as is an
equivalence relation: clearly, any t-shirt has the same color as itself, so it’s a reflexive
relation. If t-shirt A has the same color as t-shirt B, then t-shirt B has the same
color as t-shirt A, so the relation is symmetric. Finally, it is transitive: if t-shirt A
has the same color as t-shirt B and t-shirt B has the same color as t-shirt C, then
t-shirt A has the same color as t-shirt C.

We can also consider the relation being smaller or equal than (denoted ≤) on R:
this is not an equivalence relation, because it is not symmetric. For instance, 1 ≤ 2
but 2 6≤ 1.

If X is a set of words, we can define a relation as having the same first letter or
the same last letter as. Say for instance

X = {car, cat, pear};

then the relation is not an equivalence relation either, because it’s not transitive:
pear is in relation with car, car is in relation with cat, but pear is not in relation
with cat.

Exercise 2.6. Show that the relation being homeomorphic to on the set of topo-
logical spaces is an equivalence relation.
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When we glue opposite sides of the square, what we actually want to do is to
consider a point on the bottom side to be “the same as” the corresponding point
on the top side, and similarly for right-hand side and left-hand side. To formalize
this, we need to speak about equivalence classes and quotienting by an equivalence
relation.

Definition 2.7. Let ∼ be an equivalence relation on a set X. The equivalence class
[x] of an element x ∈ X is the set

[x] = {y ∈ X | x ∼ y}.

Exercise 2.8. If ∼ is an equivalence relation on a set X, then x ∼ y if and only if
[x] = [y].

Definition 2.9. The quotient of X by an equivalence relation ∼ is the set X/∼ of
equivalence classes of elements of X:

X/∼ = {[x] | x ∈ X}.

The (natural) projection from X to X/∼ is the map

π : X → X/ ∼
x 7→ [x].

Note that the quotient is a subset of the set of subsets P(X) of X and that the
projection map is surjective.

In Example 2.5, an equivalence class is the set of all t-shirts of a given color. If
we put the t-shirts in piles, split by colors, the quotient space can be though as the
set of piles.

Back to surfaces and topology: the idea is to define the surface of a donut
as a quotient space of the square by the appropriate equivalence relation. The
equivalence relation gives us the set we want to consider, but we also need a topology.
In fact, given a topological space and an equivalence relation, there is a natural way
of giving a topology to the quotient space, which is what we need:

Definition 2.10. Let (X, τ) be a topological space and ∼ an equivalence relation
on X. The quotient topology on X/∼ is given by

{U ⊂ X/∼ | π−1(U) ∈ τ}.

Exercise 2.11. With respect to the quotient topology, the projection map is con-
tinuous.

Example 2.12. Let ∼ be the relation on R given by x ∼ y if |x| = |y|. It is not
hard to see that it’s an equivalence relation and that the equivalence class of x ∈ R
is [x] = {x,−x}. So every equivalence class is a set of cardinality two, except for
the equivalence class of 0, which is simply {0}. If we think of taking the quotient
by ∼ as identifying each real number with its opposite, we can imagine it describes
the operation of “folding” the real line along 0, so we can expect the quotient space
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to be homeomorphic to [0,∞[. This is in fact correct, and here is how we can prove
it: define the map

f : [0,∞[→ R/∼
x 7→ [x].

First, note that it is a bijection:

� if f(x) = f(y), then [x] = [y], i.e. x ∼ y, that is |x| = |y|. But as x, y ≥ 0,
|x| = x and |y| = y, so we deduce x = y, proving that f is injective;

� let [x] ∈ R/∼; then [x] = f(|x|), so f is surjective.

To show that f is continuous, let U be an open set in R/∼. Then by definition of
the quotient topology, denoting by π : R→ R/∼ the projection map, we know that
π−1(U) is open. Moreover note that, for any x ∈ R,

π−1([x]) = {x,−x}

and
f−1([x]) = {|x|},

so
f−1([x]) = π−1([x]) ∩ [0,∞[.

Thus
f−1(U) = π−1(U) ∩ [0,∞[

which implies that the preimage of U is open.
Next we show that f is open, so let U ⊂ [0,∞[ be an open set of [0,∞[. Then

one can show (exercise) that

π−1(f(U)) = U ∪ {−x | x ∈ U}

and that U ∪ {−x | x ∈ U} is open in R, so that f(U) is open, i.e. f is open.
So f is continuous, open and bijective, which means that it is a homeomorphism.

Another example is the following, which formalizes the fact that if we start from
a segment and glue the two endpoints together we get a circle.

Example 2.13. Let ∼ be the equivalence relation on the interval [0, 1] given by

� t ∼ t for every t ∈ [0, 1],

� 0 ∼ 1,

� 1 ∼ 0.

Show that [0, 1]/∼ is homeomorphic to the circle S1. Hint: any (x, y) ∈ S1 can be
written as (cos(2πt), sin(2πt)), for t ∈ [0, 1[. Use this to define a map S1 → [0, 1]/∼.

Let us look at the example we wanted, describing something like the surface of
a donut (see Figure 3).
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Figure 3: The surface of a donut

Example 2.14. Let X = [0, 1]× [0, 1] and ∼ the equivalence relation given by:

� (x, y) ∼ (x, y) for every (x, y) ∈ X,

� (x1, y1) ∼ (x2, y2) if {y1, y2} = {0, 1} and x1 = x2,

� (x1, y1) ∼ (x2, y2) if {x1, x2} = {0, 1} and y1 = y2,

� if (x1, y1) ∼ (x2, y2) and (x2, y2) ∼ (x3, y3), then (x1, y1) ∼ (x3, y3).

The second condition is the one describing the gluing of top side to bottom side
and the third describes the gluing of right-hand side to left-hand side. Note that
a point which is not on a side of the square is in relation only with itself, i.e. π is
injective on ]0, 1[×]0, 1[.

Let T = X/∼ (with the quotient topology). We have described the gluing
operation mathematically now; let us check that T is a surface.

Let P = [(x0, y0)] ∈ T ; we distinguish three cases.
Case 1: (x0, y0) is not on a side of the square. Then there is some small ε > 0

such that Bε((x0, y0)) ⊂]0, 1[×]0, 1[. We claim that UP := π(Bε((x0, y0))) is an open
neighborhood of [(x0, y0)] homeomorphic to Bε((x0, y0)): indeed, since π is injective
on ]0, 1[×]0, 1[

� π−1(UP ) = Bε((x0, y0)) which is open, so UP is open;

� π : Bε((x0, y0))→ UP is a homeomorphism (exercise).

Case 2: (x0, y0) belongs to a side, but not to a corner. For simplicity, suppose
x0 = 0. Then there is some ε > 0 such that Bε((0, y0)) does not contain any corner.
We define a neighborhood UP by

UP = {[(x, y)] | (x, y) ∈ Bε((0, y0)), x ≥ 0} ∪ {[(x, y)] | (x, y) ∈ Bε((1, y0)), x ≤ 1}.

As before, the claim is that UP is an open neighborhood of P and it’s homeomorphic
to Bε((0, y0)). The idea is that it’s made up by two half disks, glued together along
a diameter.

Case 3: (x0, y0) is a corner, so P = [(0, 0)] (note that all four corners are equiva-
lent to each other). Then the neighborhood is obtained as the union of four quarter
disks, as in Figure 4. A good exercise is to make this precise.

The surface obtained this way is called torus.
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Figure 4: The neighborhoods

If we think about the way we proved that the space in Example 2.14 is a surface,
we may realize that we have found a way to describe many surfaces: we start
with a polygon and we glue sides, two by two. What matters is that there is no
side left alone, because we otherwise we get points with no open neighborhood
homeomorphic to a disk (we get only half disks!). Alternatively we start with
a polygon where some sides are included and some aren’t; then we need to glue
together only the sides that are included. Here is an example.

Example 2.15. Let X = [0, 1]×]0, 1[ and ∼ the equivalence relation given by
(x1, y1) ∼ (x2, y2) if either:

� (x1, y1) = (x2, y2), or

� {x1, x2} = {0, 1} and y1 = 1− y2.

What is happening is that we are taking a square and gluing right-hand side to left-
hand side with a twist. We can do it with a piece of paper. Try and notice how the
object you get is one-sided: without passing by the border (nor going through the
surface), we can go from what seems to be one side of the surface to the opposite!
Instead for the torus there are two distinct sides, and we cannot go from one to the
other without going through the surface.

As for the torus, we can show that the space M = X/∼ is a surface, which is
called Möbius band (or Möbius strip).

3 Lecture 3

In the last class we realized that if we consider a set of polygons, where some sides
are included and some aren’t, and we glue the sides that are included in pairs, we
obtain a surface. Writing down the equivalence relation corresponding to gluing
sides can be complicated, but we can describe it in a more pictorial way, as follows.

We draw the polygons in the plane; if two sides are to be glued together, we
label them with the same letter. But this is not enough: we also need to know how
to glue the two edges. The convention will be as follows: we add arrows to the
sides, and choose the unique gluing so that the starting point of one side is glued to
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the starting point of the other side, the same for the end points, and for points in
between we glue proportionally to the distance, i.e. if the two segments are of the
form [p, q] and [r, s], the first has length `1 and the second `2, and the arrows point
from p to q and from r to s, the point x ∈ [p, q] at distance t`1 (for some t ∈ [0, 1]
from p is glued to the point y ∈ [r, s] at distance t`2 from r. Essentially, we glue so
that the orientations of the two sides match.

See Figure 5 for how we do this for the torus and the Möbius band.

Figure 5: Side identifications for the torus and the Möbius band

Figure 6 gives another example of gluing. We know that the quotient space is
a surface, and with some effort we can see that it looks like the surface in Figure
7. But in general, given a polygon with some gluings, it is pretty hard to visualize
the final surface. Luckily, there are better ways than starting with a piece of fabric
and try to figure out what happens. The point is that there is a classification of
surfaces up to homeomorphisms and there are topological invariants (properties
which are invariant up to homeomorphism) which can be computed by looking at
a presentation of a surface as polygons with sides identified and allow us to deduce
which surface we are dealing with. Our next task is to define these invariants and
state the classification.

A

B

A
B

C

D

C

D

p1

p2

p3 p4

p5

p6

p7p8

Figure 6: An octagon with sides identified; the pi are the vertices

3.1 Compactness

Definition 3.1. A subset Y of a topological space (X, τ) is compact if for every

collection {Ui | i ∈ I} of open sets covering Y (i.e. such that
⋃
i∈I

Ui ⊃ Y ), there is a

finite subcollection which covers Y .
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Figure 7: A surface with two “holes”

Example 3.2. R is not compact: consider the open cover {Un =]− n, n[ | n ∈ N}.
If F ⊂ N is finite, it has a maximum m, so⋃

n∈F

]− n, n[ = ]−m,m[ 6= R.

On the other hand, in Rn we have an easy way to describe compact subsets: by
the Heine–Borel theorem, a subset of Rn is compact if and only if it is closed and
bounded (where a subset in Rn is bounded if it is contained in some ball around
the origin).

There is a useful fact to keep in mind:

Proposition 3.3. The continuous image of a compact space is compact (i.e. if
(X, τ) and (Y, σ) are topological spaces, X is compact and f : X → Y is a contin-
uous function, then f(X) is compact).

In particular we have the following useful consequence:

Corollary 3.4. The quotient of a compact topological space via an equivalence
relation is compact.

Proof. If (X, τ) is compact and ∼ is an equivalence relation, the projection map
π : X → X/∼ is a continuous surjective map. So X/∼ is the continuous image of a
compact set and hence it is compact.

Example 3.5. The torus T is the quotient of [0, 1] × [0, 1], which is a compact
space, so the torus is compact. On the other hand, the Möbius band M is the
quotient of [0, 1]× ]0, 1[, which is not compact, so we cannot apply the corollary. In
fact, the Möbius band is not compact: for any integer n ≥ 3, we can define

Un = π

(
[0, 1]×

]
1

n
, 1− 1

n

[)
,

where π : [0, 1]× ]0, 1[→M is the natural projection. It is an exercise to check that
the Un are open sets in M and ⋃

n≥3

Un = M.

On the other hand, for any finite F ⊂ {n ∈ N | n ≥ 3},⋃
n∈F

Un = UN 6= M,

14



where N = maxn∈F n. So we found an open cover of M containinig no finite
subcollection covering M .

Remark 3.6. It is not true that the quotient of a noncompact space is noncompact:
for instance, one can check that ([0, 1]× ]0, 1[)/∼, where ∼ is the equivalence relation
given by (x1, y1) ∼ (x2, y2) if x1 = x2, is compact (and in fact homeomorphic to
S1).

3.2 Orientability

A funny surface we have seen is the Möbius band. Some surfaces will contain it
as a subspace and others won’t. We want to make a distinction between these two
cases:

Definition 3.7. A surface S is orientable if it contains no Möbius band, i.e. if there
is no homeomorphism between a Möbius band and a subspace of S. A surface is
non-orientable otherwise.

The intuition is that orientable surfaces “have two sides”, while non-orientable
ones don’t. So for instance the sphere and the torus are orientable surfaces, while
the one – usually called Klein bottle – obtained by a square with identifications as
in Figure 8 isn’t. In the same figure we have highlighted a Möbius band contained
in the Klein bottle.

Figure 8: The side identifications for the Klein bottle

Another useful fact is that orientable surfaces can be embedded in R3, while
compact non-orientable ones cannot. In Figure 9 you can see what were to happen
if we tried to embed the Klein bottle in space: we get some self-intersection which
is not supposed to be there.

In practice, we will consider only compact orientable surfaces, which can be
nicely drawn in R3 and are easy to classify. One last concept that we need, before
stating the classification, is that of path-connectedness : this will describe mathe-
matically the fact that the surfaces we consider are made of “one piece”.

15



Figure 9: Visualizing the Klein bottle (from Wikipedia): the circle is the self-
intersection we obtain when trying to embed it in R3

3.3 Path-connectedness

Definition 3.8. Let (X, τ) be a topological space. A path from x ∈ X to y ∈ X is
a continuous function f : [0, 1]→ X such that f(0) = x and f(1) = y.

We can think of paths as wiggly lines drawn on a topological space. Generic
paths can self-intersect as much as they want, and actually they can even be com-
pletely degenerate: for any topological space (X, τ) and any point x ∈ X, the map
f : [0, 1]→ X given by f(t) = x for every t ∈ [0, 1] is a path from x to x.

Definition 3.9. X is path-connected if for every pair of distinct points x 6= y ∈ X
there is a path from x to y.

Intuitively, a space is path-connected if we can walk on it from any point to any
other point. Here are some examples:

Example 3.10. 1. R is path-connected: given x, y ∈ R,

f : [0, 1]→ R
t 7→ x+ t(y − x)

is a path between them.

2. S1 is path-connected: if p, q ∈ S1, then we can write p = (cos(θ1), sin(θ1)) and
q = (cos(θ2), sin(θ2)), for some θ1, θ2 ∈ [0, 2π[. Then a path between p and q
is given by

f : [0, 1]→ S1

t 7→ (cos(θ1 + t(θ2 − θ1)), sin(θ1 + t(θ2 − θ1))).

Note that we could not consider as a path between them a straight line in R2:
the path needs to be contained in S1!

3. X = [0, 1] ∪ [2, 3] is not path-connected: if f : [0, 1]→ X ⊂ R is a continuous
function with f(0) = 1 and f(1) = 2, by the intermediate value theorem f
would need to take every value between f(0) = 1 and f(1) = 2. So f is not a
function with values in X, that is, we cannot walk from 1 to 2 while staying
in X.
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3.4 Classification

We can now state the classification of surfaces:

Theorem 3.11. Let S be a path-connected, compact, orientable surface. Then there
is a unique integer g ≥ 0 such that S is homeomorphic to Sg, where S0 = S2 and
for every g ≥ 1 Sg is the surface obtained by a 4g-gon with the identifications in
Figure 10.

Figure 10: Side identifications on a 4g-gon

We can also visualize these surfaces better, as in Figure 11. The integer g is
what is called genus of a surface, so that Sg is said to be a surface of genus g.
Informally, the genus is the number of “holes”, so that a surface of genus g can be
obtained by attaching g handles to a sphere. In particular S0 is the sphere and S1

is the torus.

Figure 11: The surfaces Sg

We describe now how to figure out if a surface, given as polygons with side
identifications, is path-connected, orientable and compact and how we can compute
a topological invariant, called Euler characteristic, which will allow us to compute
the genus.

17



3.5 Checking compactness

We will use the fact that the quotient of a compact space is compact. Moreover, it is
not hard to show that a disjoint union of finitely many compact spaces is compact.
Thus:

Proposition 3.12. Let S be a surface obtained as quotient of a finite collection of
compact polygons, with sides identified in pairs. Then S is compact.

3.6 Checking path-connectedness

Note first that if we start from a single polygon P with sides identified in pairs,
the surface S we obtain is path-connected: indeed, given two points x, y ∈ S, and
denoting by π : P → S the natural projection, we can choose p ∈ π−1(x) and
q ∈ π−1(y) and find a path f between p and q in the polygon. Then π ◦ f is a
path between x and y. If we have multiple polygons, we just need to guarantee
that we can go from every polygon to every other polygon via some sequence of
side identifications.

Proposition 3.13. Let S be a surface obtained as quotient of a finite collection
of polygons Pi, i = 1, . . . , k. Then S is path-connected if and only if for any two
indices i 6= j ∈ {1, . . . , k} there is a sequence i1 = i, . . . , im = j of indices such that
Pil has a side identified with a side of Pil+1

, for every l = 1, . . . , j − 1.

Example 3.14. The surface on the left-hand side of Figure 12 is not path connected
(there is no way of having a path from p to q, because no side of the first polygon is
identified with a side of the second polygon. On the other hand, the surface on the
right-hand side is path connected: for instance, for going from r to s we can follow
the path drawn in green, which corresponds crosses the polygons P2, P1, P3 in this
order, through the common sides A and C.

Figure 12: Two surfaces

3.7 Checking orientability

For orientability, we give a criterion only in the case in which we obtain it as the
quotient of a single polygon.
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Proposition 3.15. Let S be a surface obtained by identifying in pairs the sides of
a polygon P . Then S is orientable if and only if the following holds:

for any pair of sides which are identified, the (counterclockwise) orientation of the
boundary agrees with orientation given by the arrow for exactly one of the two

sides.

One direction is easy to show: if we have two sides identified whose arrows have
both the same or both the opposite orientation as the counter-clockwise orientation,
we can find an embedded Möbius band as in Figure 13. It is harder to show that
the orientation condition is also sufficient for orientability.

Figure 13: Finding a Möbius band

3.8 Computing genus and Euler characteristic

Instead of directly compute the genus of a compacted, path-connected, orientable
surface, we will show how to computen another invariant, called Euler characteristic,
and show how this can be used to compute the genus. We have:

Theorem 3.16. Let S be a surface. Then we can associate to S a number χ(S),
called Euler characteristic, which is invariant under homeomorphism (i.e. if two
surfaces are homeomorphic, they have the same Euler characteristic) and satisfies

χ(Sg) = 2− 2g.

If S is a surface obtained by finitely many polygons with sides identified in pairs, v
denotes the number of equivalence classes of vertices of polygons on the surface, e
half the number of edges of the polygons and f the number of polygons. Then

χ(S) = v − e+ f.

So now if we start from a compact, path-connected and orientable surface S
obtained by polygons with side identifications, we know by the classification theorem
that there is g ≥ 0 so that S is homeomorphic to Sg. This implies, by Theorem 3.16,
that χ(S) = χ(Sg) = 2−2g, so we can find g by computing the Euler characteristic
of S. Then

g = 1− χ(S)

2
.
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Example 3.17. Let’s first look at the torus T , obtained as a square with identifica-
tions as in Figure 5. Since the two sides labelled with A are identified, the vertices
p and q project to the same point on the torus. But also the sides labelled with
B are identified, so p and s are identified, and so are q and r. So all four vertices
project to a single point on the torus, i.e. v = 1. The square has four edges, so
e = 2, and we start with a single polygon, so f = 1. So

χ(T ) = 1− 2 + 1 = 0,

which means that the genus of the torus is

g = 1− 0

2
= 1.

Example 3.18. Let us look at the surface S given by the polygon with identifica-
tions as in Figure 14.

A B
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D
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g

h
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Figure 14: A surface

Our goal is to use the classification theorem to find out which surface S is. We
know that:

� S is the quotient of a single compact polygon, so it is compact and path-
connected by Propositions 3.12 and 3.13;

� if we follow the boundary of the octagon going in the counterclockwise direc-
tion, the arrows of any pair of sides with the same label come with different
orientations, so S is orientable by Proposition 3.15.

So we know, by the classification theorem, that S is homeomorphic to Sg, for some
g ≥ 0. So we just need to compute g, and for compact, orientable, path-connected
surfaces the genus can be deduced by the Euler characteristic. For S, we have f = 1
and e = 14

2
= 7. Moreover, a ∼ b, because they are both the starting point of a

side labelled A; b ∼ i, because they are both the endpoint of a side labelled B;
i ∼ d, by looking at F . . . repeating this argument we can show that all vertices are
equivalent, except for f . So there are two equivalence classes, [a] and [f ], i.e. v = 2.
Thus

χ(S) = 2− 7 + 1 = −4
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which means that the genus of S is

g = 1− −4

2
= 3,

i.e. S is homeomorphic to S3.

Exercise 3.19. Verify that the surface in Figure 15 is homeomorphic to S2.

Figure 15: An octagon with opposite sides identified

3.9 Simplicial complexes and triangulations

In Section 3.8 we have mentioned that we can associate a topological invariant
to a surface, the Euler characteristic. Actually, this is an invariant which can be
associated to much more general topological spaces, including for instance manifolds
of every dimension. It can be defined in particular for a class of topological spaces
called simplicial complexes, which we define here.

Simpicial complexes are obtained by gluing together simple building blocks,
called simplices.

Definition 3.20. Let v1, . . . , vk ∈ Rn. The convex hull of v1, . . . , vk is the set

Conv(v1, . . . , vk) :=

{
k∑
i=1

tivi | ti ∈ [0, 1],
k∑
i=1

ti = 1

}
.

The standard k-simplex ∆k is the convex hull of e0, . . . , ek ∈ Rk, where e0 =
(0, . . . , 0) and for every i ∈ {1, . . . , n}, ei is the vector whose coefficients are all
zero, except for the i-th coefficient, which is one. A j-face of ∆k (for j ≤ k) is the
convex hull of j + 1 points among e0, . . . , ek.

So the standard 0-simplex is a point, the standard 1-simplex is a segment, the
standard 2-simplex is a triangle and the standard 3-simplex is a tetrahedron (see
Figure 16). The 0-faces of 3-simplex are its vertices, its 1-faces its edges and its
2-faces its triangular faces.

Next time we will use these building blocks to construct topological spaces.
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Figure 16: The standard 1-, 2-, and 3-simplex

4 Lecture 4

As mentioned last time, the idea of a simplicial complex is to take a bunch of
simplices and glue them together along their faces. For instance, let us look at the
space in Figure 17:

A
B

C

D

E

Figure 17: A topological space

We cant think of it as given by gluing a 1-simplex, the segment of vertices A and
B, and two 2-simplices, the triangles of vertices B,C,D and B,D,E. To encode
which simplices we are considering, we can look at which vertices form simplices. So
here we have the vertices, A,B,C,D,E, the 1-simplices AB,BC,CD,BD,BE,ED
and the 2-simplices BCD and BDE. So we can associate to this gluing of simplices
the collection of sets:

{{A}, {B}, {C}, {D}, {E}, {A,B}, {B,C}, {C,D},
{B,D}, {B,E}, {E,D}, {B,C,D}, {B,D,E}}.

This is what is called the the abstract simplicial complex defining the space.

4.0.1 Abstract simplicial complexes

Definition 4.1. A (finite) abstract simplicial complex K is given by a set V (K),
whose lements are called vertices, and a set S(K) of non-empty subsets of V (K)
called abstract simplices) such that

1. if σ ∈ S(K) and τ ⊂ σ, then τ ∈ S(K);

2. for every v ∈ V (K), {v} ∈ S(K).

22



We denote by si(K) the number of sets of S(K) of cardinality i.

Example 4.2. Suppose V (K) = {a, b, c}.

� S(K) = {{a}, {b}, {c}, {a, b}, {a, c}} defines an abstract simplicial complex.

� S(K) = {{a}, {b}, {c}, {a, b, c}} doesn’t define an abstract simplicial complex,
because there are subsets of σ = {a, b, c} which don’t belong to S(K).

� S(K) = {{a}, {b}} doesn’t define an abstract simplicial complex, because
{c} /∈ S(K).

4.0.2 (Topological) simplicial complexes

Now the idea is to start with an abstract simplicial complex K, replace a set of
size k + 1 by a k-simplex and glue the simplices together according to the subset
relation. For instance, for K1 from Example 4.12, we take three points A,B,C, one
each for {a}, {b} and {c}, then two segments I, J , one for {a, b} and one for {a, c}.
Identify one vertex of I with A and one with B, and one vertex of J with A and
one with C. So in practice we get two segments glued together along one of their
vertices (see Figure 18).

Figure 18: The geometric realization of K1 from Example 4.12

To formalize this construction we do the following:

Definition 4.3. Let σ = {a0, . . . , ak} be a finite set. The simplex realization
of σ is the topological space |σ| whose underlying set is the set of formal linear
combinations {

k∑
i=0

tiai | ti ∈ [0, 1],
k∑
i=0

ti = 1

}
and the topology is induced by identifying this set with the standard k-simplex (i.e.
we consider the bijection

θ :

{
k∑
i=0

tiai | ti ∈ [0, 1],
k∑
i=0

ti = 1

}
→ ∆k

k∑
i=0

tiai 7→
k∑
i=0

tiei

and declare that the open sets in
{∑k

i=0 tiai | ti ∈ [0, 1],
∑k

i=0 ti = 1
}

to be the

preimages via θ of the open sets in ∆k.
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This first definition formalizes the association of a k-simplex to a set of cardi-
nality k + 1. Next we need to glue the simplices according to the combinatorial
pattern given by an abstract simplicial complex.

Definition 4.4. Let K be an abstract simplicial complex. The topological realiza-
tion |K| of K is the topological space given by

|K| =

 ⊔
σ∈S(K)

|σ|

 /∼

where ∼ is the equivalence relation so that p ∼ q if they are the same formal linear
combination.

Let us see how the definition works in the example we saw before.

Example 4.5. Let V (K) = {a, b, c} and S(K) = {{a}, {b}, {c}, σ = {a, b}, τ =
{a, c}}. Then

|σ| = {ta+ (1− t)b | t ∈ [0, 1]}
|τ | = {ta+ 1− t)c | t ∈ [0, 1]}
|{a}| = {a}
|{b}| = {b}
|{c}| = {c}

and the equivalence relation identifies

1. a ∈ |{a}|, one vertex of |σ| and one vertex of |τ |

2. b ∈ |{b}| and the other vertex of |σ|

3. c ∈ |{c}| and the other vertex of |τ |.

So indeed |K| is given by two segments glued together along a vertex.

Exercise 4.6. Draw the topological realization of the abstract simplicial complex
K given by

� V (K) = {a, b, c, d}

� S(K) = {{a}, {b}, {c}, {d}, {a, b}, {a, c}, {b, c}, {a, b, c}, {b, d}}

Remark 4.7. In any simplicial complex realization, each simplex realization has
distinct vertices (two vertices of a simplex are never identified with each other).
Moreover, if σ, τ are abstract simplices in S(K), |σ| ∩ |τ | = |σ ∩ τ |, i.e. if the
intersection of two simplex realizations is not empty, it is a single face of both of
them.

Topological realizations of abstract simplicial complexes are the basic examples
of simplicial complexes:
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Definition 4.8. A (finite) simplicial complex is a triple (X,K, f), where X is a
topological space, K is an abstract simplicial complex and f : |K| → X is a home-
omorphism. We then say that X is triangulable and we call (K, f) a triangulation
of X.

Example 4.9. The circle S1 is triangulable, and a triangulation is given by (K1, f),
where f is the homeomorphism informally described in Figure 19

Figure 19: The homeomorphism f restricts to three homeomorphisms, one from
each side of the triangle to the arc on the circle of the same color.

It turns out that we can define the Euler characteristic of any triangulable space.

Proposition 4.10. Let X be a triangulable space and K, f a triangulation of X.
There is a topological invariant, called Euler characteristic of X, which can be
computed as

χ(X) =
∞∑
i=0

(−1)isi(K),

where
si(K) = |{σ ∈ S(K) | σ has cardinality i+ 1}|.

Note that since we are considering finite simplicial complexes the sum in the
proposition is finite (si(K) = 0 for all i large enough). Also, part of the content
of the proposition is that different triangulations of the same topological space will
give the same Euler characteristic, which is far from obvious.

In particular, we can also use triangulation of surfaces to compute their Euler
characteristic. One disadvantage of this approach is that in general a triangulation
of a surface contains many simplices. For instance, we can look at the case of the
torus. In Figure 20 we see two decompositions of the torus in pieces that look like
triangles, but the first one isn’t a triangulation: first of all, the two pieces are not
homeomorphic to simplex realizations in a simplicial complex, because the three
“vertices” are a single point on the surface. But even if this were not the case, there
is another problem: the intersection of the two pieces is the union of three “sides”,
and we saw before that the intersection of two simplex realization, if not empty, is
a single face of either simplex ralization. The second one is a triangulation, but it
contains 18 triangles.
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Figure 20: Two decompositions of the torus into triangles

4.1 Simplicial maps

We have defined simplicial complexes; the standard maps to consider between them
are those which preserve the decomposition in simplices. These maps will be called
simplicial maps. We will define them first at the level of abstract simplicial com-
plexes and then at the level of the associated topological spaces.

Definition 4.11. A simplicial map between two abstract simplicial complexes K1

and K2 is a map f : V (K1)→ V (K2) such that if σ ∈ S(K1), then f(σ) ∈ S(K2).

Example 4.12. Consider the abstract simplicial complexes K1, K2 and K3 given
by

V (K1) = {a, b, c}
S(K1) = {{a}, {b}, {c}, {a, b}, {a, c}}
V (K2) = {x, y, z, t}
S(K2) = {{x}, {y}, {z}, {t}, {x, y}, {x, z}, {y, z}}
V (K3) = {α, β, γ}
S(K3) = {{α}, {β}, {γ}}

The map

f1 : V (K1)→ V (K2)

a 7→ x

b 7→ z

c 7→ y

defines a simplicial map from K1 to K2, because

f1({a, b}) = {x, z} ∈ S(K2)

and
f1({a, c}) = {x, y} ∈ S(K2).

On the other hand, the map

f2 : V (K1)→ V (K2)

a 7→ z

b 7→ y

c 7→ t
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does not define a simplicial map from K1 to K2, because

f2({a, c}) = {z, t} /∈ S(K2).

On the other hand, the only way to define a simplicial map from K1 to K3 is to
map all vertices of K1 to a single vertex of K3, otherwise there will be a simplex of
K1 which is sent to something that’s not a simplex of K3.

Definition 4.13. A simplicial isomorphism between two abstract simplicial com-
plexes K1 and K2 is a simplicial map f which is a bijection between V (K1) and
V (K2) and induces a bijection between S(K1) and S(K2). Two abstract simpli-
cial complexes are combinatorially equivalent if there is a simplicial isomorphism
between them.

Note that a simplicial map f is a simplicial isomorphism if and only if there is
an inverse simplicial map, i.e. a simplicial map g such that g = f−1.

Moreover, in practice two abstract simplicial complexes are combinatorially
equivalent if the only difference is that we are calling the vertices with different
names.

Example 4.14. LetK1 be as in Example 4.12 andK4 be given by V (K4) = {x, y, z}
and

S(K4) = {{x}, {y}, {z}, {x, y}, {y, z}}.
Then K1 and K2 are combinatorially equivalent, and a simplicial isomorphism be-
tween them is given by

f : V (K1)→ V (K4)

a 7→ y

b 7→ x

c 7→ z.

Note that any simplicial isomorphism between them needs to send a to y, because
these are the only points belonging to two simplices of cardinality 2.

Note that it is not enough for a simplicial map to be a bijection of the set of
vertices to be a simplicial isomorphism, as the following example shows.

Example 4.15. LetK1 be as in Example 4.12 andK5 be given by V (K5) = {x, y, z}
and

S(K5) = {{x}, {y}, {z}, {x, y}, {y, z}, {x, z}}.
Then any bijection V (K1) → V (K5) defines a simplicial map, but neither is a
simplicial isomorphism, because K5 has one simplex more than K1.

We now define the maps between topological realizations of simplicial complexes:

Definition 4.16. Let f be a simplicial map from K1 to K2, where K1, K2 are
abstract simplicial complexes. We define the map

|f | : |K1| → |K2|
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given by
k∑
i=0

tiai 7→
k∑
i=0

tif(ai).

Essentially, the map f tells us which vertices are sent to which vertices and then
we extend the map in the most obvious way to the topological realizations of the
simplices. Here we see why it’s important that, in the definition of simplicial map,
simplices are sent to simplices: otherwise, we would not be able to extend the map
to the topological realizations of the simplices.

It is not so difficult to show that:

Lemma 4.17. Let f be a simplicial map from K1 to K2, where K1, K2 are abstract
simplicial complexes. Then |f | is continuous.

Example 4.18. Suppose K1 and K2 are the abstract simplicial complexes given
by

V (K1) = {x, y}
S(K1) = {{x}, {y}, {x, y}}
V (K2) = {a, b, c}
S(K2) = {{a}, {b}, {c}, {a, b}, {a, c}}

We can consider the simplicial maps f and g given by

f(x) = a, f(y) = b

and
g(x) = g(y) = b.

Then the map |f | will send the segment |K1| homeomorphically to the segment
|{a, b}| ⊂ |K2|, while the map |g| is the map sending every point of |K1| to one of
the vertices of |K2| (the vertex b).

We end with the following fact:

Lemma 4.19. If f is a simplicial isomorphism, |f | is a homeomorphism.

The idea of the proof is to show that |f−1| is a continuous inverse of |f |.
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