Homework

Basics in Mathematics – Geometry

Exercise 1. Show that the collection

 $\tau = \{ U \subset \mathbb{R} \mid \mathbb{R} \smallsetminus U \text{ is either finite or } \mathbb{R} \}$

is a topology on \mathbb{R} .

Solution. We need to check the three conditions that a collection $\tau \subset \mathcal{P}(\mathbb{R})$ needs to satisfy to be a topology:

- 1. since $\mathbb{R} \setminus \emptyset = \mathbb{R}$, $\emptyset \in \tau$; moreover, $\mathbb{R} \setminus \mathbb{R} = \emptyset$, which is finite, thus $\mathbb{R} \in \tau$. So the first condition is satisfied;
- 2. let $\{U_i \mid i \in I\}$ a collection of sets $U_i \in \tau$. Then:

$$\mathbb{R} \smallsetminus \left(\bigcup_{i \in I} U_i\right) = \bigcap_{i \in I} (\mathbb{R} \smallsetminus U_i)$$

and we have two possibilities:

• either $\mathbb{R} \setminus U_i = \mathbb{R}$ for every $i \in I$, in which case

$$\mathbb{R} \smallsetminus \left(\bigcup_{i \in I} U_i\right) = \bigcap_{i \in I} (\mathbb{R} \smallsetminus U_i) = \mathbb{R},$$

• or there is $i_0 \in I$ such that $\mathbb{R} \smallsetminus U_i$ is finite, in which case

$$\mathbb{R} \smallsetminus \left(\bigcup_{i \in I} U_i\right) = \bigcap_{i \in I} (\mathbb{R} \smallsetminus U_i) \subset \mathbb{R} \smallsetminus U_{i_0},$$

and thus $\mathbb{R} \setminus \left(\bigcup_{i \in I} U_i\right)$ is finite,

in both cases, we deduce that $\bigcup_{i \in I} U_i \in \tau$, as required;

3. let U_1, \ldots, U_n a finite collection of sets $U_i \in \tau$; then

$$\mathbb{R} \smallsetminus \left(\bigcap_{i=1}^{n} U_{i}\right) = \bigcup_{i=1}^{n} (\mathbb{R} \smallsetminus U_{i})$$

and as before we can distinguish two situations:

• either $\mathbb{R} \setminus U_i$ is finite for every *i*, in which case

$$\mathbb{R} \smallsetminus \left(\bigcap_{i=1}^{n} U_{i}\right) = \bigcup_{i=1}^{n} (\mathbb{R} \smallsetminus U_{i})$$

is finite,

• or there is $i_0 \in I$ such that $\mathbb{R} \setminus U_i = \mathbb{R}$, in which case

$$\mathbb{R} \smallsetminus \left(\bigcap_{i=1}^{n} U_{i}\right) = \bigcup_{i=1}^{n} (\mathbb{R} \smallsetminus U_{i}) = \mathbb{R};$$

in both cases, we deduce that $\bigcap_{i=1}^{n} U_i \in \tau$, as required.

Exercise 2. Let (X, τ) be a topological space and Y a subset, with the subspace topology. Show that the inclusion map

$$\iota: Y \hookrightarrow X$$
$$y \mapsto y$$

is continuous.

Solution. To prove that ι is continuous we need to show that the preimage of any $U \in \tau$ is open in Y. Since

$$\iota^{-1}(U) = \{ y \in Y \mid \iota(y) \in U \} = \{ y \in Y \mid y \in U \} = Y \cap U,$$

 $\iota^{-1}(U)$ is open in Y by definition of the subspace topology.

Exercise 3. Let (X, τ) and Y, σ be the topological spaces given by $X = \{a, b, c\}$, $\tau = \mathcal{P}(X), Y = \{x, y, z\}, \sigma = \{\emptyset, \{x\}, Y\}$. Consider the map

$$f: X \to Y$$
$$a \mapsto x$$
$$b \mapsto y$$
$$c \mapsto z.$$

Show that f is continuous. Is f a homeomorphism? If yes, prove it. If not, justify why.

Solution. Let us show first that f is continuous, i.e. that for every $U \in \sigma$, $f^{-1}(U) \in \tau$. We have:

$$f^{-1}(\emptyset) = \emptyset \in \tau$$

$$f^{-1}(\{x\}) = \{a\} \in \tau$$

$$f^{-1}(Y) = X \in \tau,$$

so f is continuous.

f is not a homeomorphism because it is not open: indeed, $\{b\} \in \tau$ and

$$f(\{b\}) = \{y\} \notin \sigma.$$

Exercise 4. Consider the following relations. Are they equivalence relations? If yes, prove it. If not, find an example showing that one of the properties of equivalence relations fails.

- 1. On $X = \{$ squares in $\mathbb{R}^2 \}$, the relation has the same area as.
- 2. On $X = \{f : \mathbb{R} \to \mathbb{R} \mid f \text{ function}\}$, the relation \sim given by $f \sim g$ if for every $x \in \mathbb{R}, f(x) \leq g(x)$. \land Correction in the definition of \sim .
- **Solution.** 1. The relation has the same area as on the set of squares in \mathbb{R}^2 is an equivalence relation, because:
 - for any square $A \in X$, A has the same area as A, i.e. the relation is reflexive;
 - if $A, B \in X$ are so that A has the same area as B, then B has the same area as A, i.e. the relation is symmetric;
 - if $A, B, C \in X$ are so that A has the same area as B and B has the same area as C, then A has the same area as C, i.e. the relation is transitive.
 - 2. The relation \sim is not an equivalence relation, because it is not symmetric: indeed, let $f \in X$ be the constant function f(x) = 1 for every $x \in \mathbb{R}$ and $g \in X$ the constant function g(x) = 2 for every $x \in \mathbb{R}$. Then $f \sim g$, because for every $x \in \mathbb{R}$ we have

$$f(x) = 1 \le 2 = g(x),$$

but $g \not\sim f$ because

$$g(0) = 2 \not\leq 1 = f(0).$$