
Exam

Basics in Mathematics: Geometry

Duration: 45 minutes. All answers need to be justified.
You can refer to results proven in class.

First name: Last name: Student number:

Exercise 1. Let G be a finite, d-regular graph. Prove that

|V (G)| = 2

d
|E(G)|

and deduce that if d is odd, |V (G)| must be even.

Solution. By the handshaking lemma,∑
v∈V (G)

deg(v) = 2|E(G)|.

As deg(v) = d for every v, we deduce that

d|V (G)| = 2|E(G)|

i.e.

|V (G)| = 2

d
|E(G)|.

In particular, 2 divides d|V (G)| = 2|E(G)|. If d is odd, 2 needs to divide |V (G)|, i.e.
|V (G)| is even.

Exercise 2. Let G be a finite, non-empty graph with n connected components. Show
that |E(G)| ≥ |V (G)| − n, with equality if and only if G is a forest.

Solution. We have seen in class that the result is true for connected graphs. If G has n
connected components C1, . . . , Cn, then for every i

|E(Ci)| ≥ |V (Ci)| − 1

with equality if and only if Ci is a tree.
Therefore

|E(G)| =
∑
i

|E(Ci)| ≥
∑
i

(|V (Ci)| − 1) = |V (G)| − n.

Moreover, we have equality if and only if we have an equality for every i, i.e. if and only
if each component is a tree, i.e. if and only if G is a forest.

Exercise 3. Let G be a finite graph without loops with adjacency matrix A. Let k ≥ 1
be an integer. Prove that Tr(Ak) = 0 if and only if there are no closed walks of length k.



Solution. By definition of the trace,

Tr(Ak) =
∑

v∈V (G)

(Ak)vv.

As seen in class, (Ak)vv is the number of walks from v to v of length k, i.e. the number
of closed walks of length k starting from v. In particular, (Ak)vv ≥ 0 for every v, so

0 = Tr(Ak) =
∑

v∈V (G)

(Ak)vv

if and only if (Ak)vv = 0 for every v, i.e. if and only if there are no closed walks of length
k starting at v for every v, i.e. if and only if there are no closed walks of length k.

Exercise 4. Let G be a graph whose Laplacian is the matrix

L =

 2 −2 0
−2 4 −2
0 −2 2

 .

1. Is G connected?

2. Suppose furthermore that G is 4-regular. What is its adjacency matrix? Draw G.

Solution. 1. We can either compute the eigenvalues of L by looking at the character-
istic polynomial and show that there are three distinct (real) eigenvalues, or check
that the eigenvalue zero has eigenspace of dimension one. We deduce that 0 is an
eigenvalue of multiplicity one, which implies — by a result seen in class — that G
is connected.

2. The adjacency matrix A is D − L, where D = diag(4, 4, 4), so

L =

 2 2 0
2 0 2
0 2 2

 .

So the graph G has three vertices v1, v2 and v3, there is one loop based at v1 and
one loop based at v2 and there are two edges between v1 and v2 and two edges
between v2 and v3:


