Exam

Basics in Mathematics: Geometry

Duration: 45 minutes. All answers need to be justified.
You can refer to results proven in class.

First name:	Last name:	Student number:

Exercise 1. Let G be a finite, d-regular graph. Prove that

$$
|V(G)|=\frac{2}{d}|E(G)|
$$

and deduce that if d is odd, $|V(G)|$ must be even.
Solution. By the handshaking lemma,

$$
\sum_{v \in V(G)} \operatorname{deg}(v)=2|E(G)| .
$$

As $\operatorname{deg}(v)=d$ for every v, we deduce that

$$
d|V(G)|=2|E(G)|
$$

i.e.

$$
|V(G)|=\frac{2}{d}|E(G)|
$$

In particular, 2 divides $d|V(G)|=2|E(G)|$. If d is odd, 2 needs to divide $|V(G)|$, i.e. $|V(G)|$ is even.

Exercise 2. Let G be a finite, non-empty graph with n connected components. Show that $|E(G)| \geq|V(G)|-n$, with equality if and only if G is a forest.

Solution. We have seen in class that the result is true for connected graphs. If G has n connected components C_{1}, \ldots, C_{n}, then for every i

$$
\left|E\left(C_{i}\right)\right| \geq\left|V\left(C_{i}\right)\right|-1
$$

with equality if and only if C_{i} is a tree.
Therefore

$$
|E(G)|=\sum_{i}\left|E\left(C_{i}\right)\right| \geq \sum_{i}\left(\left|V\left(C_{i}\right)\right|-1\right)=|V(G)|-n .
$$

Moreover, we have equality if and only if we have an equality for every i, i.e. if and only if each component is a tree, i.e. if and only if G is a forest.

Exercise 3. Let G be a finite graph without loops with adjacency matrix A. Let $k \geq 1$ be an integer. Prove that $\operatorname{Tr}\left(A^{k}\right)=0$ if and only if there are no closed walks of length k.

Solution. By definition of the trace,

$$
\operatorname{Tr}\left(A^{k}\right)=\sum_{v \in V(G)}\left(A^{k}\right)_{v v} .
$$

As seen in class, $\left(A^{k}\right)_{v v}$ is the number of walks from v to v of length k, i.e. the number of closed walks of length k starting from v. In particular, $\left(A^{k}\right)_{v v} \geq 0$ for every v, so

$$
0=\operatorname{Tr}\left(A^{k}\right)=\sum_{v \in V(G)}\left(A^{k}\right)_{v v}
$$

if and only if $\left(A^{k}\right)_{v v}=0$ for every v, i.e. if and only if there are no closed walks of length k starting at v for every v, i.e. if and only if there are no closed walks of length k.

Exercise 4. Let G be a graph whose Laplacian is the matrix

$$
L=\left(\begin{array}{ccc}
2 & -2 & 0 \\
-2 & 4 & -2 \\
0 & -2 & 2
\end{array}\right) .
$$

1. Is G connected?
2. Suppose furthermore that G is 4 -regular. What is its adjacency matrix? Draw G.

Solution. 1. We can either compute the eigenvalues of L by looking at the characteristic polynomial and show that there are three distinct (real) eigenvalues, or check that the eigenvalue zero has eigenspace of dimension one. We deduce that 0 is an eigenvalue of multiplicity one, which implies - by a result seen in class - that G is connected.
2. The adjacency matrix A is $D-L$, where $D=\operatorname{diag}(4,4,4)$, so

$$
L=\left(\begin{array}{lll}
2 & 2 & 0 \\
2 & 0 & 2 \\
0 & 2 & 2
\end{array}\right)
$$

So the graph G has three vertices v_{1}, v_{2} and v_{3}, there is one loop based at v_{1} and one loop based at v_{2} and there are two edges between v_{1} and v_{2} and two edges between v_{2} and v_{3} :

