Exam
 Basics in Mathematics: Geometry

Duration: 45 minutes

Exercise 1. Let G be a connected finite graph containing at least two vertices.

1. Prove that if G contains no vertex of degree one, it contains a cycle.
2. Use the previous result to show that if G is 2 -regular, it is a cycle.

Solution. 1. If by contradiction G doesn't contain a cycle, since it is connected, it is a tree. As seen in class, a tree with at least two vertices contains at least two leaves, i.e. at least two vertices of degree one, a contradiction.
2. By part $1, G$ contains a cycle C. Suppose $G \neq C$. If $V(G)=V(C), G$ must contain an edge $e \notin E(C)$ with an endpoint v on the cycle. But then the degree of v is at least three, a contradiction. So $V(G) \neq V(C)$, i.e. there is $v \in V(G) \backslash V(C)$. As G is connected, there is a path $\gamma=\left(v=v_{0}, e_{1}, \ldots, e_{n}, v_{n}=w\right)$ from v to some vertex $w \in V(C)$. Let i be the smallest integer so that $v_{i-1} \notin V(C)$ and $v_{i} \in V(C)$. Then the degree of v_{i} is at least three, a contradiction.

Exercise 2. Can the following matrices be adjacency matrices of a graph? If yes, construct a graph whose adjacency matrix is the given one. If not, explain why.

$$
A=\left(\begin{array}{llll}
2 & 5 & 6 & 0 \\
5 & 0 & 0 & 1 \\
6 & 0 & 1 & 4 \\
0 & 1 & 4 & 0
\end{array}\right) \quad B=\left(\begin{array}{llll}
2 & 3 & 1 & 2 \\
3 & 0 & 0 & 1 \\
1 & 0 & 4 & 0 \\
2 & 1 & 0 & 0
\end{array}\right) \quad C=\left(\begin{array}{llll}
2 & 3 & 0 & 1 \\
1 & 0 & 1 & 3 \\
4 & 1 & 2 & 0 \\
1 & 3 & 0 & 4
\end{array}\right)
$$

Solution. A cannot be the adjacency matrix of a graph since it has an odd number on the diagonal (and by definition the (i, i) entry of the adjacency matrix is twice the number of loops based at v_{i}, which is even).
B is the adjacency matrix of the graph:

C cannot be the adjacency matrix of a graph since it is not symmetric (and by definition, the (i, j) entry, for $i \neq j$, is the number of edges from v_{i} to v_{j}, which is the same as the number of edges from v_{j} to v_{i}, and this is the (j, i) entry).

Exercise 3. Let $n \in \mathbb{N}$ and $p \in] 0,1[$. Recall the model of random graph seen in class:

$$
\mathcal{G}(n):=\{G \mid G \text { simple graph with } V(G)=\{1, \ldots, n\}\}
$$

and

$$
\mathbb{P}_{n, p}(G)=p^{|E(G)|}(1-p)^{\binom{n}{2}-|E(G)|}
$$

1. Compute $\mathbb{P}_{n, p}$ (the vertex j has degree zero).
2. Prove that $\mathbb{P}_{n, p}(G$ has a vertex of degree zero $) \leq n(1-p)^{n-1}$.

Solution. 1. The vertex j has degree zero if and only if G doesn't contain any edge of the form $\{j, k\}$, for $k \neq j$. So
$\mathbb{P}_{n, p}($ the vertex j has degree zero $)=\mathbb{P}_{n, p}\left(E(G) \subset[V]^{2} \backslash\{\{j, k\} \mid k \neq j\}\right)=(1-p)^{n-1}$ where the last equality follows from a result proven in class.
2. $\{G$ has a vertex of degree 0$\}=\bigcup_{j=i}^{n}\{G \mid j$ has degree zero $\}$, so
$\mathbb{P}_{n, p}(G$ has a vertex of degree 0$) \leq \sum_{j=1}^{n} \mathbb{P}_{n, p}(j$ has degree zero $)=n(1-p)^{n-1}$.

